Add knn
This commit is contained in:
parent
2a4f184163
commit
59b8ab6643
@ -51,6 +51,7 @@ To assist in the development process, you may also find it useful to install
|
|||||||
|
|
||||||
## Available models
|
## Available models
|
||||||
|
|
||||||
|
- K-Nearest Neighbors (KNN)
|
||||||
- Learning Vector Quantization 1 (LVQ1)
|
- Learning Vector Quantization 1 (LVQ1)
|
||||||
- Generalized Learning Vector Quantization (GLVQ)
|
- Generalized Learning Vector Quantization (GLVQ)
|
||||||
- Generalized Relevance Learning Vector Quantization (GRLVQ)
|
- Generalized Relevance Learning Vector Quantization (GRLVQ)
|
||||||
@ -72,7 +73,6 @@ To assist in the development process, you may also find it useful to install
|
|||||||
- Robust Soft Learning Vector Quantization (RSLVQ)
|
- Robust Soft Learning Vector Quantization (RSLVQ)
|
||||||
- Probabilistic Learning Vector Quantization (PLVQ)
|
- Probabilistic Learning Vector Quantization (PLVQ)
|
||||||
- Self-Incremental Learning Vector Quantization (SILVQ)
|
- Self-Incremental Learning Vector Quantization (SILVQ)
|
||||||
- K-Nearest Neighbors (KNN)
|
|
||||||
|
|
||||||
## FAQ
|
## FAQ
|
||||||
|
|
||||||
|
37
examples/knn_iris.py
Normal file
37
examples/knn_iris.py
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
"""k-NN example using the Iris dataset."""
|
||||||
|
|
||||||
|
import prototorch as pt
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Dataset
|
||||||
|
from sklearn.datasets import load_iris
|
||||||
|
x_train, y_train = load_iris(return_X_y=True)
|
||||||
|
x_train = x_train[:, [0, 2]]
|
||||||
|
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||||
|
num_workers=0,
|
||||||
|
batch_size=150)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
hparams = dict(k=20)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = pt.models.KNN(hparams, data=train_ds)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = pt.models.VisGLVQ2D(data=(x_train, y_train))
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer(max_epochs=1, callbacks=[vis])
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
# This is only for visualization. k-NN has no training phase.
|
||||||
|
trainer.fit(model, train_loader)
|
||||||
|
|
||||||
|
# Recall
|
||||||
|
y_pred = model.predict(torch.tensor(x_train))
|
||||||
|
print(y_pred)
|
@ -24,9 +24,7 @@ class Backbone(torch.nn.Module):
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# Dataset
|
# Dataset
|
||||||
from sklearn.datasets import load_iris
|
train_ds = pt.datasets.Iris()
|
||||||
x_train, y_train = load_iris(return_X_y=True)
|
|
||||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
|
||||||
|
|
||||||
# Reproducibility
|
# Reproducibility
|
||||||
pl.utilities.seed.seed_everything(seed=2)
|
pl.utilities.seed.seed_everything(seed=2)
|
||||||
@ -39,7 +37,7 @@ if __name__ == "__main__":
|
|||||||
# Hyperparameters
|
# Hyperparameters
|
||||||
hparams = dict(
|
hparams = dict(
|
||||||
distribution=[1, 2, 3],
|
distribution=[1, 2, 3],
|
||||||
prototype_initializer=pt.components.SMI((x_train, y_train)),
|
prototype_initializer=pt.components.SMI(train_ds),
|
||||||
proto_lr=0.01,
|
proto_lr=0.01,
|
||||||
bb_lr=0.01,
|
bb_lr=0.01,
|
||||||
)
|
)
|
||||||
@ -54,7 +52,7 @@ if __name__ == "__main__":
|
|||||||
print(model)
|
print(model)
|
||||||
|
|
||||||
# Callbacks
|
# Callbacks
|
||||||
vis = pt.models.VisSiameseGLVQ2D(data=(x_train, y_train), border=0.1)
|
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||||
|
|
||||||
# Setup trainer
|
# Setup trainer
|
||||||
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
|
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
|
||||||
|
@ -1,7 +1,9 @@
|
|||||||
from importlib.metadata import PackageNotFoundError, version
|
from importlib.metadata import PackageNotFoundError, version
|
||||||
|
|
||||||
from .cbc import CBC
|
from .cbc import CBC
|
||||||
from .glvq import GLVQ, GMLVQ, GRLVQ, LVQMLN, ImageGLVQ, SiameseGLVQ, LVQ1, LVQ21
|
from .glvq import (GLVQ, GMLVQ, GRLVQ, LVQ1, LVQ21, LVQMLN, ImageGLVQ,
|
||||||
|
SiameseGLVQ)
|
||||||
|
from .knn import KNN
|
||||||
from .neural_gas import NeuralGas
|
from .neural_gas import NeuralGas
|
||||||
from .vis import *
|
from .vis import *
|
||||||
|
|
||||||
|
62
prototorch/models/knn.py
Normal file
62
prototorch/models/knn.py
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
"""The popular K-Nearest-Neighbors classification algorithm."""
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torchmetrics
|
||||||
|
from prototorch.components import LabeledComponents
|
||||||
|
from prototorch.components.initializers import parse_init_arg
|
||||||
|
from prototorch.functions.competitions import knnc
|
||||||
|
from prototorch.functions.distances import euclidean_distance
|
||||||
|
|
||||||
|
from .abstract import AbstractPrototypeModel
|
||||||
|
|
||||||
|
|
||||||
|
class KNN(AbstractPrototypeModel):
|
||||||
|
"""K-Nearest-Neighbors classification algorithm."""
|
||||||
|
def __init__(self, hparams, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.save_hyperparameters(hparams)
|
||||||
|
|
||||||
|
# Default Values
|
||||||
|
self.hparams.setdefault("k", 1)
|
||||||
|
self.hparams.setdefault("distance", euclidean_distance)
|
||||||
|
|
||||||
|
data = kwargs.get("data")
|
||||||
|
x_train, y_train = parse_init_arg(data)
|
||||||
|
|
||||||
|
self.proto_layer = LabeledComponents(initialized_components=(x_train,
|
||||||
|
y_train))
|
||||||
|
|
||||||
|
self.train_acc = torchmetrics.Accuracy()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def prototype_labels(self):
|
||||||
|
return self.proto_layer.component_labels.detach().cpu()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
protos, _ = self.proto_layer()
|
||||||
|
dis = self.hparams.distance(x, protos)
|
||||||
|
return dis
|
||||||
|
|
||||||
|
def predict(self, x):
|
||||||
|
# model.eval() # ?!
|
||||||
|
with torch.no_grad():
|
||||||
|
d = self(x)
|
||||||
|
plabels = self.proto_layer.component_labels
|
||||||
|
y_pred = knnc(d, plabels, k=self.hparams.k)
|
||||||
|
return y_pred.numpy()
|
||||||
|
|
||||||
|
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||||
|
return 1
|
||||||
|
|
||||||
|
def on_train_batch_start(self,
|
||||||
|
train_batch,
|
||||||
|
batch_idx,
|
||||||
|
dataloader_idx=None):
|
||||||
|
warnings.warn("k-NN has no training, skipping!")
|
||||||
|
return -1
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
return None
|
2
setup.py
2
setup.py
@ -19,7 +19,7 @@ DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
|
|||||||
with open("README.md", "r") as fh:
|
with open("README.md", "r") as fh:
|
||||||
long_description = fh.read()
|
long_description = fh.read()
|
||||||
|
|
||||||
INSTALL_REQUIRES = ["prototorch>=0.4.2", "pytorch_lightning", "torchmetrics"]
|
INSTALL_REQUIRES = ["prototorch>=0.4.4", "pytorch_lightning", "torchmetrics"]
|
||||||
DEV = ["bumpversion"]
|
DEV = ["bumpversion"]
|
||||||
EXAMPLES = ["matplotlib", "scikit-learn"]
|
EXAMPLES = ["matplotlib", "scikit-learn"]
|
||||||
TESTS = ["codecov", "pytest"]
|
TESTS = ["codecov", "pytest"]
|
||||||
|
Loading…
Reference in New Issue
Block a user