Add knn
This commit is contained in:
@@ -1,8 +1,10 @@
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
from .cbc import CBC
|
||||
from .glvq import GLVQ, GMLVQ, GRLVQ, LVQMLN, ImageGLVQ, SiameseGLVQ, LVQ1, LVQ21
|
||||
from .glvq import (GLVQ, GMLVQ, GRLVQ, LVQ1, LVQ21, LVQMLN, ImageGLVQ,
|
||||
SiameseGLVQ)
|
||||
from .knn import KNN
|
||||
from .neural_gas import NeuralGas
|
||||
from .vis import *
|
||||
|
||||
__version__ = "0.1.6"
|
||||
__version__ = "0.1.6"
|
||||
|
62
prototorch/models/knn.py
Normal file
62
prototorch/models/knn.py
Normal file
@@ -0,0 +1,62 @@
|
||||
"""The popular K-Nearest-Neighbors classification algorithm."""
|
||||
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.components import LabeledComponents
|
||||
from prototorch.components.initializers import parse_init_arg
|
||||
from prototorch.functions.competitions import knnc
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
|
||||
from .abstract import AbstractPrototypeModel
|
||||
|
||||
|
||||
class KNN(AbstractPrototypeModel):
|
||||
"""K-Nearest-Neighbors classification algorithm."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
# Default Values
|
||||
self.hparams.setdefault("k", 1)
|
||||
self.hparams.setdefault("distance", euclidean_distance)
|
||||
|
||||
data = kwargs.get("data")
|
||||
x_train, y_train = parse_init_arg(data)
|
||||
|
||||
self.proto_layer = LabeledComponents(initialized_components=(x_train,
|
||||
y_train))
|
||||
|
||||
self.train_acc = torchmetrics.Accuracy()
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
return self.proto_layer.component_labels.detach().cpu()
|
||||
|
||||
def forward(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
dis = self.hparams.distance(x, protos)
|
||||
return dis
|
||||
|
||||
def predict(self, x):
|
||||
# model.eval() # ?!
|
||||
with torch.no_grad():
|
||||
d = self(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
y_pred = knnc(d, plabels, k=self.hparams.k)
|
||||
return y_pred.numpy()
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
return 1
|
||||
|
||||
def on_train_batch_start(self,
|
||||
train_batch,
|
||||
batch_idx,
|
||||
dataloader_idx=None):
|
||||
warnings.warn("k-NN has no training, skipping!")
|
||||
return -1
|
||||
|
||||
def configure_optimizers(self):
|
||||
return None
|
Reference in New Issue
Block a user