Add GRLVQ with examples.

This commit is contained in:
Alexander Engelsberger 2021-05-06 18:42:06 +02:00
parent 79e5eaa69a
commit 4bbe73e3a9
3 changed files with 156 additions and 2 deletions

62
examples/grlvq_iris.py Normal file
View File

@ -0,0 +1,62 @@
"""GMLVQ example using all four dimensions of the Iris dataset."""
import pytorch_lightning as pl
import torch
from prototorch.components import initializers as cinit
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import load_iris
from torch.utils.data import DataLoader
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
from prototorch.models.glvq import GRLVQ
from sklearn.preprocessing import StandardScaler
class PrintRelevanceCallback(pl.Callback):
def on_epoch_end(self, trainer, pl_module: GRLVQ):
print(pl_module.relevance_profile)
if __name__ == "__main__":
# Dataset
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
train_ds = NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds,
num_workers=0,
batch_size=50,
shuffle=True)
# Hyperparameters
hparams = dict(
nclasses=3,
prototypes_per_class=1,
#prototype_initializer=cinit.SMI(torch.Tensor(x_train),
# torch.Tensor(y_train)),
prototype_initializer=cinit.UniformInitializer(2),
input_dim=x_train.shape[1],
lr=0.1,
#transfer_function="sigmoid_beta",
)
# Initialize the model
model = GRLVQ(hparams)
# Model summary
print(model)
# Callbacks
vis = VisSiameseGLVQ2D(x_train, y_train)
debug = PrintRelevanceCallback()
# Setup trainer
trainer = pl.Trainer(max_epochs=200, callbacks=[vis, debug])
# Training loop
trainer.fit(model, train_loader)

57
examples/grlvq_spiral.py Normal file
View File

@ -0,0 +1,57 @@
"""GMLVQ example using all four dimensions of the Iris dataset."""
import pytorch_lightning as pl
import torch
from prototorch.components import initializers as cinit
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import load_iris
from torch.utils.data import DataLoader
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
from prototorch.models.glvq import GRLVQ
from sklearn.preprocessing import StandardScaler
from prototorch.datasets.spiral import make_spiral
class PrintRelevanceCallback(pl.Callback):
def on_epoch_end(self, trainer, pl_module: GRLVQ):
print(pl_module.relevance_profile)
if __name__ == "__main__":
# Dataset
x_train, y_train = make_spiral(n_samples=1000, noise=0.3)
train_ds = NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
# Hyperparameters
hparams = dict(
nclasses=2,
prototypes_per_class=20,
prototype_initializer=cinit.SSI(torch.Tensor(x_train),
torch.Tensor(y_train)),
#prototype_initializer=cinit.UniformInitializer(2),
input_dim=x_train.shape[1],
lr=0.1,
#transfer_function="sigmoid_beta",
)
# Initialize the model
model = GRLVQ(hparams)
# Model summary
print(model)
# Callbacks
vis = VisSiameseGLVQ2D(x_train, y_train)
debug = PrintRelevanceCallback()
# Setup trainer
trainer = pl.Trainer(max_epochs=200, callbacks=[vis, debug])
# Training loop
trainer.fit(model, train_loader)

View File

@ -3,7 +3,7 @@ import torchmetrics
from prototorch.components import LabeledComponents
from prototorch.functions.activations import get_activation
from prototorch.functions.competitions import wtac
from prototorch.functions.distances import (euclidean_distance,
from prototorch.functions.distances import (euclidean_distance, omega_distance,
squared_euclidean_distance)
from prototorch.functions.losses import glvq_loss
@ -32,7 +32,7 @@ class GLVQ(AbstractPrototypeModel):
@property
def prototype_labels(self):
return self.proto_layer.component_labels.detach().numpy()
return self.proto_layer.component_labels.detach().cpu()
def forward(self, x):
protos, _ = self.proto_layer()
@ -148,6 +148,41 @@ class SiameseGLVQ(GLVQ):
return y_pred.numpy()
class GRLVQ(GLVQ):
"""Generalized Relevance Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.relevances = torch.nn.parameter.Parameter(
torch.ones(self.hparams.input_dim))
def forward(self, x):
protos, _ = self.proto_layer()
dis = omega_distance(x, protos, torch.diag(self.relevances))
return dis
def backbone(self, x):
return x @ torch.diag(self.relevances)
@property
def relevance_profile(self):
return self.relevances.detach().cpu()
def predict_latent(self, x):
"""Predict `x` assuming it is already embedded in the latent space.
Only the prototypes are embedded in the latent space using the
backbone.
"""
# model.eval() # ?!
with torch.no_grad():
protos, plabels = self.proto_layer()
latent_protos = protos @ torch.diag(self.relevances)
d = squared_euclidean_distance(x, latent_protos)
y_pred = wtac(d, plabels)
return y_pred.numpy()
class GMLVQ(GLVQ):
"""Generalized Matrix Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):