Add GRLVQ with examples.

This commit is contained in:
Alexander Engelsberger
2021-05-06 18:42:06 +02:00
parent 79e5eaa69a
commit 4bbe73e3a9
3 changed files with 156 additions and 2 deletions

View File

@@ -3,7 +3,7 @@ import torchmetrics
from prototorch.components import LabeledComponents
from prototorch.functions.activations import get_activation
from prototorch.functions.competitions import wtac
from prototorch.functions.distances import (euclidean_distance,
from prototorch.functions.distances import (euclidean_distance, omega_distance,
squared_euclidean_distance)
from prototorch.functions.losses import glvq_loss
@@ -32,7 +32,7 @@ class GLVQ(AbstractPrototypeModel):
@property
def prototype_labels(self):
return self.proto_layer.component_labels.detach().numpy()
return self.proto_layer.component_labels.detach().cpu()
def forward(self, x):
protos, _ = self.proto_layer()
@@ -148,6 +148,41 @@ class SiameseGLVQ(GLVQ):
return y_pred.numpy()
class GRLVQ(GLVQ):
"""Generalized Relevance Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.relevances = torch.nn.parameter.Parameter(
torch.ones(self.hparams.input_dim))
def forward(self, x):
protos, _ = self.proto_layer()
dis = omega_distance(x, protos, torch.diag(self.relevances))
return dis
def backbone(self, x):
return x @ torch.diag(self.relevances)
@property
def relevance_profile(self):
return self.relevances.detach().cpu()
def predict_latent(self, x):
"""Predict `x` assuming it is already embedded in the latent space.
Only the prototypes are embedded in the latent space using the
backbone.
"""
# model.eval() # ?!
with torch.no_grad():
protos, plabels = self.proto_layer()
latent_protos = protos @ torch.diag(self.relevances)
d = squared_euclidean_distance(x, latent_protos)
y_pred = wtac(d, plabels)
return y_pred.numpy()
class GMLVQ(GLVQ):
"""Generalized Matrix Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):