Add GRLVQ with examples.
This commit is contained in:
62
examples/grlvq_iris.py
Normal file
62
examples/grlvq_iris.py
Normal file
@@ -0,0 +1,62 @@
|
||||
"""GMLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||
from prototorch.models.glvq import GRLVQ
|
||||
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
|
||||
class PrintRelevanceCallback(pl.Callback):
|
||||
def on_epoch_end(self, trainer, pl_module: GRLVQ):
|
||||
print(pl_module.relevance_profile)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
scaler = StandardScaler()
|
||||
scaler.fit(x_train)
|
||||
x_train = scaler.transform(x_train)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=50,
|
||||
shuffle=True)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=1,
|
||||
#prototype_initializer=cinit.SMI(torch.Tensor(x_train),
|
||||
# torch.Tensor(y_train)),
|
||||
prototype_initializer=cinit.UniformInitializer(2),
|
||||
input_dim=x_train.shape[1],
|
||||
lr=0.1,
|
||||
#transfer_function="sigmoid_beta",
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GRLVQ(hparams)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisSiameseGLVQ2D(x_train, y_train)
|
||||
debug = PrintRelevanceCallback()
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=200, callbacks=[vis, debug])
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
57
examples/grlvq_spiral.py
Normal file
57
examples/grlvq_spiral.py
Normal file
@@ -0,0 +1,57 @@
|
||||
"""GMLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||
from prototorch.models.glvq import GRLVQ
|
||||
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
from prototorch.datasets.spiral import make_spiral
|
||||
|
||||
|
||||
class PrintRelevanceCallback(pl.Callback):
|
||||
def on_epoch_end(self, trainer, pl_module: GRLVQ):
|
||||
print(pl_module.relevance_profile)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = make_spiral(n_samples=1000, noise=0.3)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=2,
|
||||
prototypes_per_class=20,
|
||||
prototype_initializer=cinit.SSI(torch.Tensor(x_train),
|
||||
torch.Tensor(y_train)),
|
||||
#prototype_initializer=cinit.UniformInitializer(2),
|
||||
input_dim=x_train.shape[1],
|
||||
lr=0.1,
|
||||
#transfer_function="sigmoid_beta",
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GRLVQ(hparams)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisSiameseGLVQ2D(x_train, y_train)
|
||||
debug = PrintRelevanceCallback()
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=200, callbacks=[vis, debug])
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
Reference in New Issue
Block a user