Add Neural Gas Model.
This commit is contained in:
104
examples/ng_iris.py
Normal file
104
examples/ng_iris.py
Normal file
@@ -0,0 +1,104 @@
|
||||
"""CBC example using the Iris dataset."""
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.neural_gas import NeuralGas
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
title="Neural Gas Visualization",
|
||||
cmap="viridis"):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module: NeuralGas):
|
||||
protos = pl_module.proto_layer.prototypes.detach().cpu().numpy()
|
||||
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
||||
|
||||
# Visualize the data and the prototypes
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(self.x_train[:, 0],
|
||||
self.x_train[:, 1],
|
||||
c=self.y_train,
|
||||
edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c="k",
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
|
||||
# Draw connections
|
||||
for i in range(len(protos)):
|
||||
for j in range(len(protos)):
|
||||
if cmat[i][j]:
|
||||
ax.plot(
|
||||
[protos[i, 0], protos[j, 0]],
|
||||
[protos[i, 1], protos[j, 1]],
|
||||
"k-",
|
||||
)
|
||||
|
||||
plt.pause(0.01)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
scaler = StandardScaler()
|
||||
scaler.fit(x_train)
|
||||
x_train = scaler.transform(x_train)
|
||||
|
||||
y_single_class = np.zeros_like(y_train)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=1,
|
||||
prototypes_per_class=30,
|
||||
prototype_initializer="rand",
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = NeuralGas(hparams, data=[x_train, y_single_class])
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train, y_train)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=100,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
Reference in New Issue
Block a user