Add RSLVQ and LikelihoodLVQ
This commit is contained in:
parent
139109804f
commit
32d6f95db0
53
examples/probabilistic.py
Normal file
53
examples/probabilistic.py
Normal file
@ -0,0 +1,53 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 3
|
||||
prototypes_per_class = 2
|
||||
hparams = dict(
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
lr=0.05,
|
||||
variance=1,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.probabilistic.RSLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=2),
|
||||
#prototype_initializer=pt.components.UniformInitializer(2),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train), block=False)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,5 +1,6 @@
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
from . import probabilistic
|
||||
from .cbc import CBC, ImageCBC
|
||||
from .glvq import (GLVQ, GLVQ1, GLVQ21, GMLVQ, GRLVQ, LVQ1, LVQ21, LVQMLN,
|
||||
ImageGLVQ, ImageGMLVQ, SiameseGLVQ)
|
||||
|
167
prototorch/models/probabilistic.py
Normal file
167
prototorch/models/probabilistic.py
Normal file
@ -0,0 +1,167 @@
|
||||
"""Probabilistic GLVQ methods"""
|
||||
|
||||
import torch
|
||||
|
||||
from .glvq import GLVQ
|
||||
|
||||
|
||||
# HELPER
|
||||
# TODO: Refactor into general files, if usefull
|
||||
def probability(distance, variance):
|
||||
return torch.exp(-(distance * distance) / (2 * variance))
|
||||
|
||||
|
||||
def grouped_sum(value: torch.Tensor,
|
||||
labels: torch.LongTensor) -> (torch.Tensor, torch.LongTensor):
|
||||
"""Group-wise average for (sparse) grouped tensors
|
||||
|
||||
Args:
|
||||
value (torch.Tensor): values to average (# samples, latent dimension)
|
||||
labels (torch.LongTensor): labels for embedding parameters (# samples,)
|
||||
|
||||
Returns:
|
||||
result (torch.Tensor): (# unique labels, latent dimension)
|
||||
new_labels (torch.LongTensor): (# unique labels,)
|
||||
|
||||
Examples:
|
||||
>>> samples = torch.Tensor([
|
||||
[0.15, 0.15, 0.15], #-> group / class 1
|
||||
[0.2, 0.2, 0.2], #-> group / class 3
|
||||
[0.4, 0.4, 0.4], #-> group / class 3
|
||||
[0.0, 0.0, 0.0] #-> group / class 0
|
||||
])
|
||||
>>> labels = torch.LongTensor([1, 5, 5, 0])
|
||||
>>> result, new_labels = groupby_mean(samples, labels)
|
||||
|
||||
>>> result
|
||||
tensor([[0.0000, 0.0000, 0.0000],
|
||||
[0.1500, 0.1500, 0.1500],
|
||||
[0.3000, 0.3000, 0.3000]])
|
||||
|
||||
>>> new_labels
|
||||
tensor([0, 1, 5])
|
||||
"""
|
||||
uniques = labels.unique(sorted=True).tolist()
|
||||
labels = labels.tolist()
|
||||
|
||||
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
|
||||
labels = torch.LongTensor(list(map(key_val.get, labels)))
|
||||
|
||||
labels = labels.view(labels.size(0), 1).expand(-1, value.size(1))
|
||||
|
||||
unique_labels = labels.unique(dim=0)
|
||||
result = torch.zeros_like(unique_labels, dtype=torch.float).scatter_add_(
|
||||
0, labels, value)
|
||||
return result.T
|
||||
|
||||
|
||||
def likelihood_loss(probabilities, target, prototype_labels):
|
||||
uniques = prototype_labels.unique(sorted=True).tolist()
|
||||
labels = target.tolist()
|
||||
|
||||
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
|
||||
target_indices = torch.LongTensor(list(map(key_val.get, labels)))
|
||||
|
||||
whole_probability = probabilities.sum(dim=1)
|
||||
correct_probability = probabilities[torch.arange(len(probabilities)),
|
||||
target_indices]
|
||||
wrong_probability = whole_probability - correct_probability
|
||||
|
||||
likelihood = correct_probability / wrong_probability
|
||||
log_likelihood = torch.log(likelihood)
|
||||
return log_likelihood
|
||||
|
||||
|
||||
def robust_soft_loss(probabilities, target, prototype_labels):
|
||||
uniques = prototype_labels.unique(sorted=True).tolist()
|
||||
labels = target.tolist()
|
||||
|
||||
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
|
||||
target_indices = torch.LongTensor(list(map(key_val.get, labels)))
|
||||
|
||||
whole_probability = probabilities.sum(dim=1)
|
||||
correct_probability = probabilities[torch.arange(len(probabilities)),
|
||||
target_indices]
|
||||
|
||||
likelihood = correct_probability / whole_probability
|
||||
log_likelihood = torch.log(likelihood)
|
||||
return log_likelihood
|
||||
|
||||
|
||||
class LikelihoodRatioLVQ(GLVQ):
|
||||
"""Learning Vector Quantization based on Likelihood Ratios
|
||||
|
||||
Based on "Soft Learning Vector Quantization" from Sambu Seo and Klaus Obermayer (2003).
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
self.conditional_distribution = probability
|
||||
|
||||
def forward(self, x):
|
||||
distances = self._forward(x)
|
||||
conditional = self.conditional_distribution(distances,
|
||||
self.hparams.variance)
|
||||
prior = 1.0 / torch.Tensor(self.proto_layer.distribution).sum().item()
|
||||
posterior = conditional * prior
|
||||
|
||||
plabels = torch.LongTensor(self.proto_layer.component_labels)
|
||||
y_pred = grouped_sum(posterior.T, plabels)
|
||||
|
||||
return y_pred
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
X, y = batch
|
||||
out = self.forward(X)
|
||||
plabels = self.proto_layer.component_labels
|
||||
batch_loss = -likelihood_loss(out, y, prototype_labels=plabels)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
|
||||
return loss
|
||||
|
||||
def predict(self, x):
|
||||
probabilities = self.forward(x)
|
||||
confidence, prediction = torch.max(probabilities, dim=1)
|
||||
prediction[confidence < 0.1] = -1
|
||||
return prediction
|
||||
|
||||
|
||||
class RSLVQ(GLVQ):
|
||||
"""Learning Vector Quantization based on Likelihood Ratios
|
||||
|
||||
Based on "Soft Learning Vector Quantization" from Sambu Seo and Klaus Obermayer (2003).
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
self.conditional_distribution = probability
|
||||
|
||||
def forward(self, x):
|
||||
distances = self._forward(x)
|
||||
conditional = self.conditional_distribution(distances,
|
||||
self.hparams.variance)
|
||||
prior = 1.0 / torch.Tensor(self.proto_layer.distribution).sum().item()
|
||||
posterior = conditional * prior
|
||||
|
||||
plabels = torch.LongTensor(self.proto_layer.component_labels)
|
||||
y_pred = grouped_sum(posterior.T, plabels)
|
||||
|
||||
return y_pred
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
X, y = batch
|
||||
out = self.forward(X)
|
||||
plabels = self.proto_layer.component_labels
|
||||
batch_loss = -robust_soft_loss(out, y, prototype_labels=plabels)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
|
||||
return loss
|
||||
|
||||
def predict(self, x):
|
||||
probabilities = self.forward(x)
|
||||
confidence, prediction = torch.max(probabilities, dim=1)
|
||||
#prediction[confidence < 0.1] = -1
|
||||
return prediction
|
||||
|
||||
|
||||
__all__ = ["LikelihoodRatioLVQ", "probability", "grouped_sum"]
|
Loading…
Reference in New Issue
Block a user