Add RSLVQ and LikelihoodLVQ
This commit is contained in:
53
examples/probabilistic.py
Normal file
53
examples/probabilistic.py
Normal file
@@ -0,0 +1,53 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 3
|
||||
prototypes_per_class = 2
|
||||
hparams = dict(
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
lr=0.05,
|
||||
variance=1,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.probabilistic.RSLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=2),
|
||||
#prototype_initializer=pt.components.UniformInitializer(2),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train), block=False)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
Reference in New Issue
Block a user