Update example scripts
This commit is contained in:
parent
265e74dd31
commit
2a4f184163
@ -17,15 +17,16 @@ if __name__ == "__main__":
|
||||
batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
nclasses = 3
|
||||
prototypes_per_class = 2
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=2,
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GLVQ(hparams)
|
||||
model = pt.models.GLVQ(hparams, optimizer=torch.optim.Adam)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train))
|
||||
|
@ -25,10 +25,11 @@ if __name__ == "__main__":
|
||||
batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
nclasses = 2
|
||||
prototypes_per_class = 20
|
||||
hparams = dict(
|
||||
nclasses=2,
|
||||
prototypes_per_class=20,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=1e-7),
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=1e-1),
|
||||
transfer_function="sigmoid_beta",
|
||||
transfer_beta=10.0,
|
||||
lr=0.01,
|
||||
|
@ -15,9 +15,10 @@ if __name__ == "__main__":
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
# Hyperparameters
|
||||
nclasses = 3
|
||||
prototypes_per_class = 1
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=1,
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
input_dim=x_train.shape[1],
|
||||
latent_dim=x_train.shape[1],
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
|
@ -17,9 +17,10 @@ if __name__ == "__main__":
|
||||
batch_size=32)
|
||||
|
||||
# Hyperparameters
|
||||
nclasses = 2
|
||||
prototypes_per_class = 2
|
||||
hparams = dict(
|
||||
nclasses=2,
|
||||
prototypes_per_class=2,
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
input_dim=100,
|
||||
latent_dim=2,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
|
@ -1,42 +0,0 @@
|
||||
"""Classical LVQ using GLVQ example on the Iris dataset."""
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
from sklearn.datasets import load_iris
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
#prototype_initializer=pt.components.Random(2),
|
||||
lr=0.005,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.LVQ1(hparams)
|
||||
#model = pt.models.LVQ21(hparams)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train))
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=200,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -38,11 +38,10 @@ if __name__ == "__main__":
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=2,
|
||||
distribution=[1, 2, 3],
|
||||
prototype_initializer=pt.components.SMI((x_train, y_train)),
|
||||
proto_lr=0.001,
|
||||
bb_lr=0.001,
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
|
Loading…
Reference in New Issue
Block a user