Use LambdaLayer from ProtoTorch
This commit is contained in:
parent
8f4d66edf1
commit
27eccf44d4
@ -47,17 +47,25 @@ if __name__ == "__main__":
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(train_ds)
|
||||
proto_scheduler = PrototypeScheduler(train_ds, 10)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(args,
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
max_epochs=100,
|
||||
callbacks=[vis, proto_scheduler],
|
||||
callbacks=[
|
||||
vis,
|
||||
proto_scheduler,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
weights_summary=None,
|
||||
accelerator='ddp')
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
@ -9,23 +9,11 @@ from prototorch.functions.distances import (euclidean_distance, omega_distance,
|
||||
sed)
|
||||
from prototorch.functions.helper import get_flat
|
||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
from prototorch.modules import LambdaLayer
|
||||
|
||||
from .abstract import AbstractPrototypeModel, PrototypeImageModel
|
||||
|
||||
|
||||
class FunctionLayer(torch.nn.Module):
|
||||
def __init__(self, distance_fn):
|
||||
super().__init__()
|
||||
self.fn = distance_fn
|
||||
self.name = distance_fn.__name__
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.fn(*args, **kwargs)
|
||||
|
||||
def extra_repr(self):
|
||||
return self.name
|
||||
|
||||
|
||||
class GLVQ(AbstractPrototypeModel):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
@ -46,9 +34,9 @@ class GLVQ(AbstractPrototypeModel):
|
||||
distribution=self.hparams.distribution,
|
||||
initializer=self.prototype_initializer(**kwargs))
|
||||
|
||||
self.distance_layer = FunctionLayer(distance_fn)
|
||||
self.transfer_layer = FunctionLayer(tranfer_fn)
|
||||
self.loss = FunctionLayer(glvq_loss)
|
||||
self.distance_layer = LambdaLayer(distance_fn)
|
||||
self.transfer_layer = LambdaLayer(tranfer_fn)
|
||||
self.loss = LambdaLayer(glvq_loss)
|
||||
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user