Use LambdaLayer from ProtoTorch

This commit is contained in:
Jensun Ravichandran
2021-05-31 16:53:04 +02:00
parent 8f4d66edf1
commit 27eccf44d4
2 changed files with 18 additions and 22 deletions

View File

@@ -9,23 +9,11 @@ from prototorch.functions.distances import (euclidean_distance, omega_distance,
sed)
from prototorch.functions.helper import get_flat
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
from prototorch.modules import LambdaLayer
from .abstract import AbstractPrototypeModel, PrototypeImageModel
class FunctionLayer(torch.nn.Module):
def __init__(self, distance_fn):
super().__init__()
self.fn = distance_fn
self.name = distance_fn.__name__
def forward(self, *args, **kwargs):
return self.fn(*args, **kwargs)
def extra_repr(self):
return self.name
class GLVQ(AbstractPrototypeModel):
"""Generalized Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
@@ -46,9 +34,9 @@ class GLVQ(AbstractPrototypeModel):
distribution=self.hparams.distribution,
initializer=self.prototype_initializer(**kwargs))
self.distance_layer = FunctionLayer(distance_fn)
self.transfer_layer = FunctionLayer(tranfer_fn)
self.loss = FunctionLayer(glvq_loss)
self.distance_layer = LambdaLayer(distance_fn)
self.transfer_layer = LambdaLayer(tranfer_fn)
self.loss = LambdaLayer(glvq_loss)
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)