Use LambdaLayer from ProtoTorch
This commit is contained in:
@@ -9,23 +9,11 @@ from prototorch.functions.distances import (euclidean_distance, omega_distance,
|
||||
sed)
|
||||
from prototorch.functions.helper import get_flat
|
||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
from prototorch.modules import LambdaLayer
|
||||
|
||||
from .abstract import AbstractPrototypeModel, PrototypeImageModel
|
||||
|
||||
|
||||
class FunctionLayer(torch.nn.Module):
|
||||
def __init__(self, distance_fn):
|
||||
super().__init__()
|
||||
self.fn = distance_fn
|
||||
self.name = distance_fn.__name__
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.fn(*args, **kwargs)
|
||||
|
||||
def extra_repr(self):
|
||||
return self.name
|
||||
|
||||
|
||||
class GLVQ(AbstractPrototypeModel):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
@@ -46,9 +34,9 @@ class GLVQ(AbstractPrototypeModel):
|
||||
distribution=self.hparams.distribution,
|
||||
initializer=self.prototype_initializer(**kwargs))
|
||||
|
||||
self.distance_layer = FunctionLayer(distance_fn)
|
||||
self.transfer_layer = FunctionLayer(tranfer_fn)
|
||||
self.loss = FunctionLayer(glvq_loss)
|
||||
self.distance_layer = LambdaLayer(distance_fn)
|
||||
self.transfer_layer = LambdaLayer(tranfer_fn)
|
||||
self.loss = LambdaLayer(glvq_loss)
|
||||
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
|
||||
|
Reference in New Issue
Block a user