feat: distribute GMLVQ into mixins
This commit is contained in:
23
prototorch/y_arch/__init__.py
Normal file
23
prototorch/y_arch/__init__.py
Normal file
@@ -0,0 +1,23 @@
|
||||
from .architectures.base import BaseYArchitecture
|
||||
from .architectures.comparison import (
|
||||
OmegaComparisonMixin,
|
||||
SimpleComparisonMixin,
|
||||
)
|
||||
from .architectures.competition import WTACompetitionMixin
|
||||
from .architectures.components import SupervisedArchitecture
|
||||
from .architectures.loss import GLVQLossMixin
|
||||
from .architectures.optimization import (
|
||||
MultipleLearningRateMixin,
|
||||
SingleLearningRateMixin,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'BaseYArchitecture',
|
||||
"OmegaComparisonMixin",
|
||||
"SimpleComparisonMixin",
|
||||
"SingleLearningRateMixin",
|
||||
"MultipleLearningRateMixin",
|
||||
"SupervisedArchitecture",
|
||||
"WTACompetitionMixin",
|
||||
"GLVQLossMixin",
|
||||
]
|
212
prototorch/y_arch/architectures/base.py
Normal file
212
prototorch/y_arch/architectures/base.py
Normal file
@@ -0,0 +1,212 @@
|
||||
"""
|
||||
Proto Y Architecture
|
||||
|
||||
Network architecture for Component based Learning.
|
||||
"""
|
||||
from dataclasses import dataclass
|
||||
from typing import (
|
||||
Dict,
|
||||
Set,
|
||||
Type,
|
||||
)
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchmetrics import Metric
|
||||
from torchmetrics.classification.accuracy import Accuracy
|
||||
|
||||
|
||||
class BaseYArchitecture(pl.LightningModule):
|
||||
|
||||
@dataclass
|
||||
class HyperParameters:
|
||||
...
|
||||
|
||||
registered_metrics: Dict[Type[Metric], Metric] = {}
|
||||
registered_metric_names: Dict[Type[Metric], Set[str]] = {}
|
||||
|
||||
components_layer: torch.nn.Module
|
||||
|
||||
def __init__(self, hparams) -> None:
|
||||
super().__init__()
|
||||
|
||||
# Common Steps
|
||||
self.init_components(hparams)
|
||||
self.init_latent(hparams)
|
||||
self.init_comparison(hparams)
|
||||
self.init_competition(hparams)
|
||||
|
||||
# Train Steps
|
||||
self.init_loss(hparams)
|
||||
|
||||
# Inference Steps
|
||||
self.init_inference(hparams)
|
||||
|
||||
# Initialize Model Metrics
|
||||
self.init_model_metrics()
|
||||
|
||||
# internal API, called by models and callbacks
|
||||
def register_torchmetric(
|
||||
self,
|
||||
name: str,
|
||||
metric: Type[Metric],
|
||||
**metric_kwargs,
|
||||
):
|
||||
if metric not in self.registered_metrics:
|
||||
self.registered_metrics[metric] = metric(**metric_kwargs)
|
||||
self.registered_metric_names[metric] = {name}
|
||||
else:
|
||||
self.registered_metric_names[metric].add(name)
|
||||
|
||||
# external API
|
||||
def get_competition(self, batch, components):
|
||||
latent_batch, latent_components = self.latent(batch, components)
|
||||
# TODO: => Latent Hook
|
||||
comparison_tensor = self.comparison(latent_batch, latent_components)
|
||||
# TODO: => Comparison Hook
|
||||
return comparison_tensor
|
||||
|
||||
def forward(self, batch):
|
||||
if isinstance(batch, torch.Tensor):
|
||||
batch = (batch, None)
|
||||
# TODO: manage different datatypes?
|
||||
components = self.components_layer()
|
||||
# TODO: => Component Hook
|
||||
comparison_tensor = self.get_competition(batch, components)
|
||||
# TODO: => Competition Hook
|
||||
return self.inference(comparison_tensor, components)
|
||||
|
||||
def predict(self, batch):
|
||||
"""
|
||||
Alias for forward
|
||||
"""
|
||||
return self.forward(batch)
|
||||
|
||||
def forward_comparison(self, batch):
|
||||
if isinstance(batch, torch.Tensor):
|
||||
batch = (batch, None)
|
||||
# TODO: manage different datatypes?
|
||||
components = self.components_layer()
|
||||
# TODO: => Component Hook
|
||||
return self.get_competition(batch, components)
|
||||
|
||||
def loss_forward(self, batch):
|
||||
# TODO: manage different datatypes?
|
||||
components = self.components_layer()
|
||||
# TODO: => Component Hook
|
||||
comparison_tensor = self.get_competition(batch, components)
|
||||
# TODO: => Competition Hook
|
||||
return self.loss(comparison_tensor, batch, components)
|
||||
|
||||
# Empty Initialization
|
||||
# TODO: Type hints
|
||||
# TODO: Docs
|
||||
def init_components(self, hparams: HyperParameters) -> None:
|
||||
...
|
||||
|
||||
def init_latent(self, hparams: HyperParameters) -> None:
|
||||
...
|
||||
|
||||
def init_comparison(self, hparams: HyperParameters) -> None:
|
||||
...
|
||||
|
||||
def init_competition(self, hparams: HyperParameters) -> None:
|
||||
...
|
||||
|
||||
def init_loss(self, hparams: HyperParameters) -> None:
|
||||
...
|
||||
|
||||
def init_inference(self, hparams: HyperParameters) -> None:
|
||||
...
|
||||
|
||||
def init_model_metrics(self) -> None:
|
||||
self.register_torchmetric('accuracy', Accuracy)
|
||||
|
||||
# Empty Steps
|
||||
# TODO: Type hints
|
||||
def components(self):
|
||||
"""
|
||||
This step has no input.
|
||||
|
||||
It returns the components.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The components step has no reasonable default.")
|
||||
|
||||
def latent(self, batch, components):
|
||||
"""
|
||||
The latent step receives the data batch and the components.
|
||||
It can transform both by an arbitrary function.
|
||||
|
||||
It returns the transformed batch and components, each of the same length as the original input.
|
||||
"""
|
||||
return batch, components
|
||||
|
||||
def comparison(self, batch, components):
|
||||
"""
|
||||
Takes a batch of size N and the component set of size M.
|
||||
|
||||
It returns an NxMxD tensor containing D (usually 1) pairwise comparison measures.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The comparison step has no reasonable default.")
|
||||
|
||||
def competition(self, comparison_measures, components):
|
||||
"""
|
||||
Takes the tensor of comparison measures.
|
||||
|
||||
Assigns a competition vector to each class.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The competition step has no reasonable default.")
|
||||
|
||||
def loss(self, comparison_measures, batch, components):
|
||||
"""
|
||||
Takes the tensor of competition measures.
|
||||
|
||||
Calculates a single loss value
|
||||
"""
|
||||
raise NotImplementedError("The loss step has no reasonable default.")
|
||||
|
||||
def inference(self, comparison_measures, components):
|
||||
"""
|
||||
Takes the tensor of competition measures.
|
||||
|
||||
Returns the inferred vector.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The inference step has no reasonable default.")
|
||||
|
||||
def update_metrics_step(self, batch):
|
||||
x, y = batch
|
||||
|
||||
# Prediction Metrics
|
||||
preds = self(x)
|
||||
for metric in self.registered_metrics:
|
||||
instance = self.registered_metrics[metric].to(self.device)
|
||||
instance(y, preds)
|
||||
|
||||
def update_metrics_epoch(self):
|
||||
for metric in self.registered_metrics:
|
||||
instance = self.registered_metrics[metric].to(self.device)
|
||||
value = instance.compute()
|
||||
|
||||
for name in self.registered_metric_names[metric]:
|
||||
self.log(name, value)
|
||||
|
||||
instance.reset()
|
||||
|
||||
# Lightning Hooks
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
self.update_metrics_step(batch)
|
||||
|
||||
return self.loss_forward(batch)
|
||||
|
||||
def training_epoch_end(self, outs) -> None:
|
||||
self.update_metrics_epoch()
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
return self.loss_forward(batch)
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
return self.loss_forward(batch)
|
112
prototorch/y_arch/architectures/comparison.py
Normal file
112
prototorch/y_arch/architectures/comparison.py
Normal file
@@ -0,0 +1,112 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Callable, Dict
|
||||
|
||||
import torch
|
||||
from prototorch.core.distances import euclidean_distance
|
||||
from prototorch.core.initializers import (
|
||||
AbstractLinearTransformInitializer,
|
||||
EyeLinearTransformInitializer,
|
||||
)
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
from prototorch.y_arch.architectures.base import BaseYArchitecture
|
||||
from torch import Tensor
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class SimpleComparisonMixin(BaseYArchitecture):
|
||||
"""
|
||||
Simple Comparison
|
||||
|
||||
A comparison layer that only uses the positions of the components and the batch for dissimilarity computation.
|
||||
"""
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(BaseYArchitecture.HyperParameters):
|
||||
"""
|
||||
comparison_fn: The comparison / dissimilarity function to use. Default: euclidean_distance.
|
||||
comparison_args: Keyword arguments for the comparison function. Default: {}.
|
||||
"""
|
||||
comparison_fn: Callable = euclidean_distance
|
||||
comparison_args: dict = field(default_factory=lambda: dict())
|
||||
|
||||
comparison_parameters: dict = field(default_factory=lambda: dict())
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def init_comparison(self, hparams: HyperParameters):
|
||||
self.comparison_layer = LambdaLayer(
|
||||
fn=hparams.comparison_fn,
|
||||
**hparams.comparison_args,
|
||||
)
|
||||
|
||||
self.comparison_kwargs: dict[str, Tensor] = dict()
|
||||
|
||||
def comparison(self, batch, components):
|
||||
comp_tensor, _ = components
|
||||
batch_tensor, _ = batch
|
||||
|
||||
comp_tensor = comp_tensor.unsqueeze(1)
|
||||
|
||||
distances = self.comparison_layer(
|
||||
batch_tensor,
|
||||
comp_tensor,
|
||||
**self.comparison_kwargs,
|
||||
)
|
||||
|
||||
return distances
|
||||
|
||||
|
||||
class OmegaComparisonMixin(SimpleComparisonMixin):
|
||||
"""
|
||||
Omega Comparison
|
||||
|
||||
A comparison layer that uses the positions of the components and the batch for dissimilarity computation.
|
||||
"""
|
||||
|
||||
_omega: torch.Tensor
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(SimpleComparisonMixin.HyperParameters):
|
||||
"""
|
||||
input_dim: Necessary Field: The dimensionality of the input.
|
||||
latent_dim: The dimensionality of the latent space. Default: 2.
|
||||
omega_initializer: The initializer to use for the omega matrix. Default: EyeLinearTransformInitializer.
|
||||
"""
|
||||
input_dim: int | None = None
|
||||
latent_dim: int = 2
|
||||
omega_initializer: type[
|
||||
AbstractLinearTransformInitializer] = EyeLinearTransformInitializer
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def init_comparison(self, hparams: HyperParameters) -> None:
|
||||
super().init_comparison(hparams)
|
||||
|
||||
# Initialize the omega matrix
|
||||
if hparams.input_dim is None:
|
||||
raise ValueError("input_dim must be specified.")
|
||||
else:
|
||||
omega = hparams.omega_initializer().generate(
|
||||
hparams.input_dim,
|
||||
hparams.latent_dim,
|
||||
)
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
self.comparison_kwargs = dict(omega=self._omega)
|
||||
|
||||
# Properties
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
return self._omega.detach().cpu()
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
omega = self._omega.detach()
|
||||
lam = omega @ omega.T
|
||||
return lam.detach().cpu()
|
29
prototorch/y_arch/architectures/competition.py
Normal file
29
prototorch/y_arch/architectures/competition.py
Normal file
@@ -0,0 +1,29 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
from prototorch.core.competitions import WTAC
|
||||
from prototorch.y_arch.architectures.base import BaseYArchitecture
|
||||
|
||||
|
||||
class WTACompetitionMixin(BaseYArchitecture):
|
||||
"""
|
||||
Winner Take All Competition
|
||||
|
||||
A competition layer that uses the winner-take-all strategy.
|
||||
"""
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(BaseYArchitecture.HyperParameters):
|
||||
"""
|
||||
No hyperparameters.
|
||||
"""
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def init_inference(self, hparams: HyperParameters):
|
||||
self.competition_layer = WTAC()
|
||||
|
||||
def inference(self, comparison_measures, components):
|
||||
comp_labels = components[1]
|
||||
return self.competition_layer(comparison_measures, comp_labels)
|
53
prototorch/y_arch/architectures/components.py
Normal file
53
prototorch/y_arch/architectures/components.py
Normal file
@@ -0,0 +1,53 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
from prototorch.core.components import LabeledComponents
|
||||
from prototorch.core.initializers import (
|
||||
AbstractComponentsInitializer,
|
||||
LabelsInitializer,
|
||||
)
|
||||
from prototorch.y_arch import BaseYArchitecture
|
||||
|
||||
|
||||
class SupervisedArchitecture(BaseYArchitecture):
|
||||
"""
|
||||
Supervised Architecture
|
||||
|
||||
An architecture that uses labeled Components as component Layer.
|
||||
"""
|
||||
components_layer: LabeledComponents
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters:
|
||||
"""
|
||||
distribution: A valid prototype distribution. No default possible.
|
||||
components_initializer: An implementation of AbstractComponentsInitializer. No default possible.
|
||||
"""
|
||||
distribution: "dict[str, int]"
|
||||
component_initializer: AbstractComponentsInitializer
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def init_components(self, hparams: HyperParameters):
|
||||
self.components_layer = LabeledComponents(
|
||||
distribution=hparams.distribution,
|
||||
components_initializer=hparams.component_initializer,
|
||||
labels_initializer=LabelsInitializer(),
|
||||
)
|
||||
|
||||
# Properties
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@property
|
||||
def prototypes(self):
|
||||
"""
|
||||
Returns the position of the prototypes.
|
||||
"""
|
||||
return self.components_layer.components.detach().cpu()
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
"""
|
||||
Returns the labels of the prototypes.
|
||||
"""
|
||||
return self.components_layer.labels.detach().cpu()
|
42
prototorch/y_arch/architectures/loss.py
Normal file
42
prototorch/y_arch/architectures/loss.py
Normal file
@@ -0,0 +1,42 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from prototorch.core.losses import GLVQLoss
|
||||
from prototorch.y_arch.architectures.base import BaseYArchitecture
|
||||
|
||||
|
||||
class GLVQLossMixin(BaseYArchitecture):
|
||||
"""
|
||||
GLVQ Loss
|
||||
|
||||
A loss layer that uses the Generalized Learning Vector Quantization (GLVQ) loss.
|
||||
"""
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(BaseYArchitecture.HyperParameters):
|
||||
"""
|
||||
margin: The margin of the GLVQ loss. Default: 0.0.
|
||||
transfer_fn: Transfer function to use. Default: sigmoid_beta.
|
||||
transfer_args: Keyword arguments for the transfer function. Default: {beta: 10.0}.
|
||||
"""
|
||||
margin: float = 0.0
|
||||
|
||||
transfer_fn: str = "sigmoid_beta"
|
||||
transfer_args: dict = field(default_factory=lambda: dict(beta=10.0))
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def init_loss(self, hparams: HyperParameters):
|
||||
self.loss_layer = GLVQLoss(
|
||||
margin=hparams.margin,
|
||||
transfer_fn=hparams.transfer_fn,
|
||||
**hparams.transfer_args,
|
||||
)
|
||||
|
||||
def loss(self, comparison_measures, batch, components):
|
||||
target = batch[1]
|
||||
comp_labels = components[1]
|
||||
loss = self.loss_layer(comparison_measures, target, comp_labels)
|
||||
self.log('loss', loss)
|
||||
return loss
|
86
prototorch/y_arch/architectures/optimization.py
Normal file
86
prototorch/y_arch/architectures/optimization.py
Normal file
@@ -0,0 +1,86 @@
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Type
|
||||
|
||||
import torch
|
||||
from prototorch.y_arch import BaseYArchitecture
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class SingleLearningRateMixin(BaseYArchitecture):
|
||||
"""
|
||||
Single Learning Rate
|
||||
|
||||
All parameters are updated with a single learning rate.
|
||||
"""
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(BaseYArchitecture.HyperParameters):
|
||||
"""
|
||||
lr: The learning rate. Default: 0.1.
|
||||
optimizer: The optimizer to use. Default: torch.optim.Adam.
|
||||
"""
|
||||
lr: float = 0.1
|
||||
optimizer: Type[torch.optim.Optimizer] = torch.optim.Adam
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def __init__(self, hparams: HyperParameters) -> None:
|
||||
super().__init__(hparams)
|
||||
self.lr = hparams.lr
|
||||
self.optimizer = hparams.optimizer
|
||||
|
||||
# Hooks
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def configure_optimizers(self):
|
||||
return self.optimizer(self.parameters(), lr=self.lr) # type: ignore
|
||||
|
||||
|
||||
class MultipleLearningRateMixin(BaseYArchitecture):
|
||||
"""
|
||||
Multiple Learning Rates
|
||||
|
||||
Define Different Learning Rates for different parameters.
|
||||
"""
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(BaseYArchitecture.HyperParameters):
|
||||
"""
|
||||
lr: The learning rate. Default: 0.1.
|
||||
optimizer: The optimizer to use. Default: torch.optim.Adam.
|
||||
"""
|
||||
lr: dict = field(default_factory=lambda: dict())
|
||||
optimizer: Type[torch.optim.Optimizer] = torch.optim.Adam
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def __init__(self, hparams: HyperParameters) -> None:
|
||||
super().__init__(hparams)
|
||||
self.lr = hparams.lr
|
||||
self.optimizer = hparams.optimizer
|
||||
|
||||
# Hooks
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def configure_optimizers(self):
|
||||
optimizers = []
|
||||
for name, lr in self.lr.items():
|
||||
if not hasattr(self, name):
|
||||
raise ValueError(f"{name} is not a parameter of {self}")
|
||||
else:
|
||||
model_part = getattr(self, name)
|
||||
if isinstance(model_part, Parameter):
|
||||
optimizers.append(
|
||||
self.optimizer(
|
||||
[model_part],
|
||||
lr=lr, # type: ignore
|
||||
))
|
||||
elif hasattr(model_part, "parameters"):
|
||||
optimizers.append(
|
||||
self.optimizer(
|
||||
model_part.parameters(),
|
||||
lr=lr, # type: ignore
|
||||
))
|
||||
return optimizers
|
149
prototorch/y_arch/callbacks.py
Normal file
149
prototorch/y_arch/callbacks.py
Normal file
@@ -0,0 +1,149 @@
|
||||
import warnings
|
||||
from typing import Optional, Type
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.models.vis import Vis2DAbstract
|
||||
from prototorch.utils.utils import mesh2d
|
||||
from prototorch.y_arch.architectures.base import BaseYArchitecture
|
||||
from prototorch.y_arch.library.gmlvq import GMLVQ
|
||||
from pytorch_lightning.loggers import TensorBoardLogger
|
||||
|
||||
DIVERGING_COLOR_MAPS = [
|
||||
'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn',
|
||||
'Spectral', 'coolwarm', 'bwr', 'seismic'
|
||||
]
|
||||
|
||||
|
||||
class LogTorchmetricCallback(pl.Callback):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name,
|
||||
metric: Type[torchmetrics.Metric],
|
||||
on="prediction",
|
||||
**metric_kwargs,
|
||||
) -> None:
|
||||
self.name = name
|
||||
self.metric = metric
|
||||
self.metric_kwargs = metric_kwargs
|
||||
self.on = on
|
||||
|
||||
def setup(
|
||||
self,
|
||||
trainer: pl.Trainer,
|
||||
pl_module: BaseYArchitecture,
|
||||
stage: Optional[str] = None,
|
||||
) -> None:
|
||||
if self.on == "prediction":
|
||||
pl_module.register_torchmetric(
|
||||
self.name,
|
||||
self.metric,
|
||||
**self.metric_kwargs,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"{self.on} is no valid metric hook")
|
||||
|
||||
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.setup_ax()
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
if x_train is not None:
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
mesh_input, xx, yy = mesh2d(
|
||||
np.vstack([x_train, protos]),
|
||||
self.border,
|
||||
self.resolution,
|
||||
)
|
||||
else:
|
||||
mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
|
||||
_components = pl_module.components_layer.components
|
||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict(mesh_input)
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
|
||||
class VisGMLVQ2D(Vis2DAbstract):
|
||||
|
||||
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.ev_proj = ev_proj
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
device = pl_module.device
|
||||
omega = pl_module._omega.detach()
|
||||
lam = omega @ omega.T
|
||||
u, _, _ = torch.pca_lowrank(lam, q=2)
|
||||
with torch.no_grad():
|
||||
x_train = torch.Tensor(x_train).to(device)
|
||||
x_train = x_train @ u
|
||||
x_train = x_train.cpu().detach()
|
||||
if self.show_protos:
|
||||
with torch.no_grad():
|
||||
protos = torch.Tensor(protos).to(device)
|
||||
protos = protos @ u
|
||||
protos = protos.cpu().detach()
|
||||
ax = self.setup_ax()
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
if self.show_protos:
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
|
||||
|
||||
class PlotLambdaMatrixToTensorboard(pl.Callback):
|
||||
|
||||
def __init__(self, cmap='seismic') -> None:
|
||||
super().__init__()
|
||||
self.cmap = cmap
|
||||
|
||||
if self.cmap not in DIVERGING_COLOR_MAPS and type(self.cmap) is str:
|
||||
warnings.warn(
|
||||
f"{self.cmap} is not a diverging color map. We recommend to use one of the following: {DIVERGING_COLOR_MAPS}"
|
||||
)
|
||||
|
||||
def on_train_start(self, trainer, pl_module: GMLVQ):
|
||||
self.plot_lambda(trainer, pl_module)
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module: GMLVQ):
|
||||
self.plot_lambda(trainer, pl_module)
|
||||
|
||||
def plot_lambda(self, trainer, pl_module: GMLVQ):
|
||||
|
||||
self.fig, self.ax = plt.subplots(1, 1)
|
||||
|
||||
# plot lambda matrix
|
||||
l_matrix = pl_module.lambda_matrix
|
||||
|
||||
# normalize lambda matrix
|
||||
l_matrix = l_matrix / torch.max(torch.abs(l_matrix))
|
||||
|
||||
# plot lambda matrix
|
||||
self.ax.imshow(l_matrix.detach().numpy(), self.cmap, vmin=-1, vmax=1)
|
||||
|
||||
self.fig.colorbar(self.ax.images[-1])
|
||||
|
||||
# add title
|
||||
self.ax.set_title('Lambda Matrix')
|
||||
|
||||
# add to tensorboard
|
||||
if isinstance(trainer.logger, TensorBoardLogger):
|
||||
trainer.logger.experiment.add_figure(
|
||||
f"lambda_matrix",
|
||||
self.fig,
|
||||
trainer.global_step,
|
||||
)
|
||||
else:
|
||||
warnings.warn(
|
||||
f"{self.__class__.__name__} is not compatible with {trainer.logger.__class__.__name__} as logger. Use TensorBoardLogger instead."
|
||||
)
|
5
prototorch/y_arch/library/__init__.py
Normal file
5
prototorch/y_arch/library/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
from .glvq import GLVQ
|
||||
|
||||
__all__ = [
|
||||
"GLVQ",
|
||||
]
|
35
prototorch/y_arch/library/glvq.py
Normal file
35
prototorch/y_arch/library/glvq.py
Normal file
@@ -0,0 +1,35 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
from prototorch.y_arch import (
|
||||
SimpleComparisonMixin,
|
||||
SingleLearningRateMixin,
|
||||
SupervisedArchitecture,
|
||||
WTACompetitionMixin,
|
||||
)
|
||||
from prototorch.y_arch.architectures.loss import GLVQLossMixin
|
||||
|
||||
|
||||
class GLVQ(
|
||||
SupervisedArchitecture,
|
||||
SimpleComparisonMixin,
|
||||
GLVQLossMixin,
|
||||
WTACompetitionMixin,
|
||||
SingleLearningRateMixin,
|
||||
):
|
||||
"""
|
||||
Generalized Learning Vector Quantization (GLVQ)
|
||||
|
||||
A GLVQ architecture that uses the winner-take-all strategy and the GLVQ loss.
|
||||
"""
|
||||
|
||||
@dataclass
|
||||
class HyperParameters(
|
||||
SimpleComparisonMixin.HyperParameters,
|
||||
SingleLearningRateMixin.HyperParameters,
|
||||
GLVQLossMixin.HyperParameters,
|
||||
WTACompetitionMixin.HyperParameters,
|
||||
SupervisedArchitecture.HyperParameters,
|
||||
):
|
||||
"""
|
||||
No hyperparameters.
|
||||
"""
|
50
prototorch/y_arch/library/gmlvq.py
Normal file
50
prototorch/y_arch/library/gmlvq.py
Normal file
@@ -0,0 +1,50 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from prototorch.core.distances import omega_distance
|
||||
from prototorch.y_arch import (
|
||||
GLVQLossMixin,
|
||||
MultipleLearningRateMixin,
|
||||
OmegaComparisonMixin,
|
||||
SupervisedArchitecture,
|
||||
WTACompetitionMixin,
|
||||
)
|
||||
|
||||
|
||||
class GMLVQ(
|
||||
SupervisedArchitecture,
|
||||
OmegaComparisonMixin,
|
||||
GLVQLossMixin,
|
||||
WTACompetitionMixin,
|
||||
MultipleLearningRateMixin,
|
||||
):
|
||||
"""
|
||||
Generalized Matrix Learning Vector Quantization (GMLVQ)
|
||||
|
||||
A GMLVQ architecture that uses the winner-take-all strategy and the GLVQ loss.
|
||||
"""
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(
|
||||
MultipleLearningRateMixin.HyperParameters,
|
||||
OmegaComparisonMixin.HyperParameters,
|
||||
GLVQLossMixin.HyperParameters,
|
||||
WTACompetitionMixin.HyperParameters,
|
||||
SupervisedArchitecture.HyperParameters,
|
||||
):
|
||||
"""
|
||||
comparison_fn: The comparison / dissimilarity function to use. Override Default: omega_distance.
|
||||
comparison_args: Keyword arguments for the comparison function. Override Default: {}.
|
||||
"""
|
||||
comparison_fn: Callable = omega_distance
|
||||
comparison_args: dict = field(default_factory=lambda: dict())
|
||||
optimizer: type[torch.optim.Optimizer] = torch.optim.Adam
|
||||
|
||||
lr: dict = field(default_factory=lambda: dict(
|
||||
components_layer=0.1,
|
||||
_omega=0.5,
|
||||
))
|
Reference in New Issue
Block a user