Merge branch 'dev' into main
This commit is contained in:
commit
1a0e697b27
15
.codacy.yml
15
.codacy.yml
@ -1,15 +0,0 @@
|
||||
# To validate the contents of your configuration file
|
||||
# run the following command in the folder where the configuration file is located:
|
||||
# codacy-analysis-cli validate-configuration --directory `pwd`
|
||||
# To analyse, run:
|
||||
# codacy-analysis-cli analyse --tool remark-lint --directory `pwd`
|
||||
---
|
||||
engines:
|
||||
pylintpython3:
|
||||
exclude_paths:
|
||||
- config/engines.yml
|
||||
remark-lint:
|
||||
exclude_paths:
|
||||
- config/engines.yml
|
||||
exclude_paths:
|
||||
- 'tests/**'
|
@ -1,2 +0,0 @@
|
||||
comment:
|
||||
require_changes: yes
|
25
.github/workflows/examples.yml
vendored
Normal file
25
.github/workflows/examples.yml
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
# Thi workflow will install Python dependencies, run tests and lint with a single version of Python
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: examples
|
||||
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- 'examples/**.py'
|
||||
jobs:
|
||||
cpu:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python 3.9
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: 3.9
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- name: Run examples
|
||||
run: |
|
||||
./tests/test_examples.sh examples/
|
73
.github/workflows/pythonapp.yml
vendored
Normal file
73
.github/workflows/pythonapp.yml
vendored
Normal file
@ -0,0 +1,73 @@
|
||||
# This workflow will install Python dependencies, run tests and lint with a single version of Python
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: tests
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
branches: [ master ]
|
||||
|
||||
jobs:
|
||||
style:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python 3.9
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: 3.9
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- uses: pre-commit/action@v2.0.3
|
||||
compatibility:
|
||||
needs: style
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.7", "3.8", "3.9"]
|
||||
os: [ubuntu-latest, windows-latest]
|
||||
exclude:
|
||||
- os: windows-latest
|
||||
python-version: "3.7"
|
||||
- os: windows-latest
|
||||
python-version: "3.8"
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
pytest
|
||||
publish_pypi:
|
||||
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
|
||||
needs: compatibility
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python 3.9
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: "3.9"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
pip install wheel
|
||||
- name: Build package
|
||||
run: python setup.py sdist bdist_wheel
|
||||
- name: Publish a Python distribution to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
user: __token__
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
@ -3,7 +3,7 @@
|
||||
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.0.1
|
||||
rev: v4.1.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
@ -18,19 +18,19 @@ repos:
|
||||
- id: autoflake
|
||||
|
||||
- repo: http://github.com/PyCQA/isort
|
||||
rev: 5.8.0
|
||||
rev: 5.10.1
|
||||
hooks:
|
||||
- id: isort
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: v0.902
|
||||
rev: v0.931
|
||||
hooks:
|
||||
- id: mypy
|
||||
files: prototorch
|
||||
additional_dependencies: [types-pkg_resources]
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: v0.31.0
|
||||
rev: v0.32.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
|
||||
@ -42,7 +42,7 @@ repos:
|
||||
- id: python-check-blanket-noqa
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v2.19.4
|
||||
rev: v2.31.0
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
|
||||
|
44
.travis.yml
44
.travis.yml
@ -1,44 +0,0 @@
|
||||
dist: bionic
|
||||
sudo: false
|
||||
language: python
|
||||
python:
|
||||
- 3.9
|
||||
- 3.8
|
||||
- 3.7
|
||||
- 3.6
|
||||
cache:
|
||||
directories:
|
||||
- "$HOME/.cache/pip"
|
||||
- "./tests/artifacts"
|
||||
- "$HOME/datasets"
|
||||
install:
|
||||
- pip install git+git://github.com/si-cim/prototorch@dev --progress-bar off
|
||||
- pip install .[all] --progress-bar off
|
||||
script:
|
||||
- coverage run -m pytest
|
||||
- ./tests/test_examples.sh examples/
|
||||
after_success:
|
||||
- bash <(curl -s https://codecov.io/bash)
|
||||
|
||||
# Publish on PyPI
|
||||
jobs:
|
||||
include:
|
||||
- stage: build
|
||||
python: 3.9
|
||||
script: echo "Starting Pypi build"
|
||||
deploy:
|
||||
provider: pypi
|
||||
username: __token__
|
||||
distributions: "sdist bdist_wheel"
|
||||
password:
|
||||
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
|
||||
on:
|
||||
tags: true
|
||||
skip_existing: true
|
||||
|
||||
# The password is encrypted with:
|
||||
# `cd prototorch && travis encrypt your-pypi-api-token --add deploy.password`
|
||||
# See https://docs.travis-ci.com/user/deployment/pypi and
|
||||
# https://github.com/travis-ci/travis.rb#installation
|
||||
# for more details
|
||||
# Note: The encrypt command does not work well in ZSH.
|
@ -1,6 +1,5 @@
|
||||
# ProtoTorch Models
|
||||
|
||||
[![Build Status](https://api.travis-ci.com/si-cim/prototorch_models.svg?branch=main)](https://travis-ci.com/github/si-cim/prototorch_models)
|
||||
[![GitHub tag (latest by date)](https://img.shields.io/github/v/tag/si-cim/prototorch_models?color=yellow&label=version)](https://github.com/si-cim/prototorch_models/releases)
|
||||
[![PyPI](https://img.shields.io/pypi/v/prototorch_models)](https://pypi.org/project/prototorch_models/)
|
||||
[![GitHub license](https://img.shields.io/github/license/si-cim/prototorch_models)](https://github.com/si-cim/prototorch_models/blob/master/LICENSE)
|
||||
|
@ -1,4 +1,4 @@
|
||||
"""GLVQ example using the spiral dataset."""
|
||||
"""GMLVQ example using the spiral dataset."""
|
||||
|
||||
import argparse
|
||||
|
104
examples/gtlvq_mnist.py
Normal file
104
examples/gtlvq_mnist.py
Normal file
@ -0,0 +1,104 @@
|
||||
"""GTLVQ example using the MNIST dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
test_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=256)
|
||||
test_loader = torch.utils.data.DataLoader(test_ds,
|
||||
num_workers=0,
|
||||
batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 10
|
||||
prototypes_per_class = 1
|
||||
hparams = dict(
|
||||
input_dim=28 * 28,
|
||||
latent_dim=28,
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.ImageGTLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
#Use one batch of data for subspace initiator.
|
||||
omega_initializer=pt.initializers.PCALinearTransformInitializer(
|
||||
next(iter(train_loader))[0].reshape(256, 28 * 28)))
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisImgComp(
|
||||
data=train_ds,
|
||||
num_columns=10,
|
||||
show=False,
|
||||
tensorboard=True,
|
||||
random_data=100,
|
||||
add_embedding=True,
|
||||
embedding_data=200,
|
||||
flatten_data=False,
|
||||
)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=1,
|
||||
prune_quota_per_epoch=10,
|
||||
frequency=1,
|
||||
verbose=True,
|
||||
)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=15,
|
||||
mode="min",
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
# using GPUs here is strongly recommended!
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
# es,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
weights_summary=None,
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
63
examples/gtlvq_moons.py
Normal file
63
examples/gtlvq_moons.py
Normal file
@ -0,0 +1,63 @@
|
||||
"""Localized-GTLVQ example using the Moons dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
batch_size=256,
|
||||
shuffle=True)
|
||||
|
||||
# Hyperparameters
|
||||
# Latent_dim should be lower than input dim.
|
||||
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GTLVQ(
|
||||
hparams, prototypes_initializer=pt.initializers.SMCI(train_ds))
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_acc",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="max",
|
||||
verbose=False,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -10,6 +10,7 @@ from prototorch.utils.colors import hex_to_rgb
|
||||
|
||||
|
||||
class Vis2DColorSOM(pl.Callback):
|
||||
|
||||
def __init__(self, data, title="ColorSOMe", pause_time=0.1):
|
||||
super().__init__()
|
||||
self.title = title
|
||||
|
@ -8,6 +8,7 @@ import torch
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
|
@ -8,6 +8,7 @@ import torch
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
|
73
examples/siamese_gtlvq_iris.py
Normal file
73
examples/siamese_gtlvq_iris.py
Normal file
@ -0,0 +1,73 @@
|
||||
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.latent_size = latent_size
|
||||
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
|
||||
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
|
||||
self.activation = torch.nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.activation(self.dense1(x))
|
||||
out = self.activation(self.dense2(x))
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(distribution=[1, 2, 3],
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
input_dim=2,
|
||||
latent_dim=1)
|
||||
|
||||
# Initialize the backbone
|
||||
backbone = Backbone(latent_size=hparams["input_dim"])
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.SiameseGTLVQ(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
backbone=backbone,
|
||||
both_path_gradients=False,
|
||||
)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -8,17 +8,34 @@ from .glvq import (
|
||||
GLVQ21,
|
||||
GMLVQ,
|
||||
GRLVQ,
|
||||
GTLVQ,
|
||||
LGMLVQ,
|
||||
LVQMLN,
|
||||
ImageGLVQ,
|
||||
ImageGMLVQ,
|
||||
ImageGTLVQ,
|
||||
SiameseGLVQ,
|
||||
SiameseGMLVQ,
|
||||
SiameseGTLVQ,
|
||||
)
|
||||
from .knn import KNN
|
||||
from .lvq import LVQ1, LVQ21, MedianLVQ
|
||||
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
|
||||
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
|
||||
from .lvq import (
|
||||
LVQ1,
|
||||
LVQ21,
|
||||
MedianLVQ,
|
||||
)
|
||||
from .probabilistic import (
|
||||
CELVQ,
|
||||
PLVQ,
|
||||
RSLVQ,
|
||||
SLVQ,
|
||||
)
|
||||
from .unsupervised import (
|
||||
GrowingNeuralGas,
|
||||
HeskesSOM,
|
||||
KohonenSOM,
|
||||
NeuralGas,
|
||||
)
|
||||
from .vis import *
|
||||
|
||||
__version__ = "0.4.0"
|
||||
|
@ -14,6 +14,7 @@ from ..nn.wrappers import LambdaLayer
|
||||
|
||||
class ProtoTorchBolt(pl.LightningModule):
|
||||
"""All ProtoTorch models are ProtoTorch Bolts."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
@ -52,6 +53,7 @@ class ProtoTorchBolt(pl.LightningModule):
|
||||
|
||||
|
||||
class PrototypeModel(ProtoTorchBolt):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@ -81,6 +83,7 @@ class PrototypeModel(ProtoTorchBolt):
|
||||
|
||||
|
||||
class UnsupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@ -103,6 +106,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
|
||||
class SupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@ -135,7 +139,7 @@ class SupervisedPrototypeModel(PrototypeModel):
|
||||
distances = self.compute_distances(x)
|
||||
_, plabels = self.proto_layer()
|
||||
winning = stratified_min_pooling(distances, plabels)
|
||||
y_pred = torch.nn.functional.softmin(winning)
|
||||
y_pred = torch.nn.functional.softmin(winning, dim=1)
|
||||
return y_pred
|
||||
|
||||
def predict_from_distances(self, distances):
|
||||
@ -178,6 +182,7 @@ class ProtoTorchMixin(object):
|
||||
|
||||
class NonGradientMixin(ProtoTorchMixin):
|
||||
"""Mixin for custom non-gradient optimization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.automatic_optimization = False
|
||||
@ -188,6 +193,7 @@ class NonGradientMixin(ProtoTorchMixin):
|
||||
|
||||
class ImagePrototypesMixin(ProtoTorchMixin):
|
||||
"""Mixin for models with image prototypes."""
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
|
@ -11,6 +11,7 @@ from .extras import ConnectionTopology
|
||||
|
||||
|
||||
class PruneLoserPrototypes(pl.Callback):
|
||||
|
||||
def __init__(self,
|
||||
threshold=0.01,
|
||||
idle_epochs=10,
|
||||
@ -67,6 +68,7 @@ class PruneLoserPrototypes(pl.Callback):
|
||||
|
||||
|
||||
class PrototypeConvergence(pl.Callback):
|
||||
|
||||
def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
|
||||
self.min_delta = min_delta
|
||||
self.idle_epochs = idle_epochs # epochs to wait
|
||||
@ -89,6 +91,7 @@ class GNGCallback(pl.Callback):
|
||||
Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, reduction=0.1, freq=10):
|
||||
self.reduction = reduction
|
||||
self.freq = freq
|
||||
|
@ -13,6 +13,7 @@ from .glvq import SiameseGLVQ
|
||||
|
||||
class CBC(SiameseGLVQ):
|
||||
"""Classification-By-Components."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
|
@ -15,7 +15,46 @@ def rank_scaled_gaussian(distances, lambd):
|
||||
return torch.exp(-torch.exp(-ranks / lambd) * distances)
|
||||
|
||||
|
||||
def orthogonalization(tensors):
|
||||
"""Orthogonalization via polar decomposition """
|
||||
u, _, v = torch.svd(tensors, compute_uv=True)
|
||||
u_shape = tuple(list(u.shape))
|
||||
v_shape = tuple(list(v.shape))
|
||||
|
||||
# reshape to (num x N x M)
|
||||
u = torch.reshape(u, (-1, u_shape[-2], u_shape[-1]))
|
||||
v = torch.reshape(v, (-1, v_shape[-2], v_shape[-1]))
|
||||
|
||||
out = u @ v.permute([0, 2, 1])
|
||||
|
||||
out = torch.reshape(out, u_shape[:-1] + (v_shape[-2], ))
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def ltangent_distance(x, y, omegas):
|
||||
r"""Localized Tangent distance.
|
||||
Compute Orthogonal Complement: math:`\bm P_k = \bm I - \Omega_k \Omega_k^T`
|
||||
Compute Tangent Distance: math:`{\| \bm P \bm x - \bm P_k \bm y_k \|}_2`
|
||||
|
||||
:param `torch.tensor` omegas: Three dimensional matrix
|
||||
:rtype: `torch.tensor`
|
||||
"""
|
||||
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)]
|
||||
p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
|
||||
omegas, omegas.permute([0, 2, 1]))
|
||||
projected_x = x @ p
|
||||
projected_y = torch.diagonal(y @ p).T
|
||||
expanded_y = torch.unsqueeze(projected_y, dim=1)
|
||||
batchwise_difference = expanded_y - projected_x
|
||||
differences_squared = batchwise_difference**2
|
||||
distances = torch.sqrt(torch.sum(differences_squared, dim=2))
|
||||
distances = distances.permute(1, 0)
|
||||
return distances
|
||||
|
||||
|
||||
class GaussianPrior(torch.nn.Module):
|
||||
|
||||
def __init__(self, variance):
|
||||
super().__init__()
|
||||
self.variance = variance
|
||||
@ -25,6 +64,7 @@ class GaussianPrior(torch.nn.Module):
|
||||
|
||||
|
||||
class RankScaledGaussianPrior(torch.nn.Module):
|
||||
|
||||
def __init__(self, lambd):
|
||||
super().__init__()
|
||||
self.lambd = lambd
|
||||
@ -34,6 +74,7 @@ class RankScaledGaussianPrior(torch.nn.Module):
|
||||
|
||||
|
||||
class ConnectionTopology(torch.nn.Module):
|
||||
|
||||
def __init__(self, agelimit, num_prototypes):
|
||||
super().__init__()
|
||||
self.agelimit = agelimit
|
||||
|
@ -4,16 +4,26 @@ import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from ..core.competitions import wtac
|
||||
from ..core.distances import lomega_distance, omega_distance, squared_euclidean_distance
|
||||
from ..core.distances import (
|
||||
lomega_distance,
|
||||
omega_distance,
|
||||
squared_euclidean_distance,
|
||||
)
|
||||
from ..core.initializers import EyeTransformInitializer
|
||||
from ..core.losses import GLVQLoss, lvq1_loss, lvq21_loss
|
||||
from ..core.losses import (
|
||||
GLVQLoss,
|
||||
lvq1_loss,
|
||||
lvq21_loss,
|
||||
)
|
||||
from ..core.transforms import LinearTransform
|
||||
from ..nn.wrappers import LambdaLayer, LossLayer
|
||||
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
|
||||
from .extras import ltangent_distance, orthogonalization
|
||||
|
||||
|
||||
class GLVQ(SupervisedPrototypeModel):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@ -98,6 +108,7 @@ class SiameseGLVQ(GLVQ):
|
||||
transformation pipeline are only learned from the inputs.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
hparams,
|
||||
backbone=torch.nn.Identity(),
|
||||
@ -164,6 +175,7 @@ class LVQMLN(SiameseGLVQ):
|
||||
rather in the embedding space.
|
||||
|
||||
"""
|
||||
|
||||
def compute_distances(self, x):
|
||||
latent_protos, _ = self.proto_layer()
|
||||
latent_x = self.backbone(x)
|
||||
@ -179,6 +191,7 @@ class GRLVQ(SiameseGLVQ):
|
||||
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@ -204,6 +217,7 @@ class SiameseGMLVQ(SiameseGLVQ):
|
||||
Implemented as a Siamese network with a linear transformation backbone.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@ -234,6 +248,7 @@ class GMLVQ(GLVQ):
|
||||
function. This makes it easier to implement a localized variant.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", omega_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
@ -268,6 +283,7 @@ class GMLVQ(GLVQ):
|
||||
|
||||
class LGMLVQ(GMLVQ):
|
||||
"""Localized and Generalized Matrix Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", lomega_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
@ -282,8 +298,48 @@ class LGMLVQ(GMLVQ):
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
|
||||
|
||||
class GTLVQ(LGMLVQ):
|
||||
"""Localized and Generalized Tangent Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", ltangent_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
omega_initializer = kwargs.get("omega_initializer")
|
||||
|
||||
if omega_initializer is not None:
|
||||
subspace = omega_initializer.generate(self.hparams.input_dim,
|
||||
self.hparams.latent_dim)
|
||||
omega = torch.repeat_interleave(subspace.unsqueeze(0),
|
||||
self.num_prototypes,
|
||||
dim=0)
|
||||
else:
|
||||
omega = torch.rand(
|
||||
self.num_prototypes,
|
||||
self.hparams.input_dim,
|
||||
self.hparams.latent_dim,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
# Re-register `_omega` to override the one from the super class.
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
with torch.no_grad():
|
||||
self._omega.copy_(orthogonalization(self._omega))
|
||||
|
||||
|
||||
class SiameseGTLVQ(SiameseGLVQ, GTLVQ):
|
||||
"""Generalized Tangent Learning Vector Quantization.
|
||||
|
||||
Implemented as a Siamese network with a linear transformation backbone.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class GLVQ1(GLVQ):
|
||||
"""Generalized Learning Vector Quantization 1."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = LossLayer(lvq1_loss)
|
||||
@ -292,6 +348,7 @@ class GLVQ1(GLVQ):
|
||||
|
||||
class GLVQ21(GLVQ):
|
||||
"""Generalized Learning Vector Quantization 2.1."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = LossLayer(lvq21_loss)
|
||||
@ -314,3 +371,18 @@ class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
|
||||
after updates.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
|
||||
"""GTLVQ for training on image data.
|
||||
|
||||
GTLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
with torch.no_grad():
|
||||
self._omega.copy_(orthogonalization(self._omega))
|
||||
|
@ -4,13 +4,17 @@ import warnings
|
||||
|
||||
from ..core.competitions import KNNC
|
||||
from ..core.components import LabeledComponents
|
||||
from ..core.initializers import LiteralCompInitializer, LiteralLabelsInitializer
|
||||
from ..core.initializers import (
|
||||
LiteralCompInitializer,
|
||||
LiteralLabelsInitializer,
|
||||
)
|
||||
from ..utils.utils import parse_data_arg
|
||||
from .abstract import SupervisedPrototypeModel
|
||||
|
||||
|
||||
class KNN(SupervisedPrototypeModel):
|
||||
"""K-Nearest-Neighbors classification algorithm."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
|
@ -9,6 +9,7 @@ from .glvq import GLVQ
|
||||
|
||||
class LVQ1(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plables = self.proto_layer()
|
||||
x, y = train_batch
|
||||
@ -38,6 +39,7 @@ class LVQ1(NonGradientMixin, GLVQ):
|
||||
|
||||
class LVQ21(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plabels = self.proto_layer()
|
||||
|
||||
@ -70,6 +72,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
|
||||
# TODO Avoid computing distances over and over
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, verbose=True, **kwargs):
|
||||
self.verbose = verbose
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
@ -11,6 +11,7 @@ from .glvq import GLVQ, SiameseGMLVQ
|
||||
|
||||
class CELVQ(GLVQ):
|
||||
"""Cross-Entropy Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@ -29,6 +30,7 @@ class CELVQ(GLVQ):
|
||||
|
||||
|
||||
class ProbabilisticLVQ(GLVQ):
|
||||
|
||||
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@ -62,6 +64,7 @@ class ProbabilisticLVQ(GLVQ):
|
||||
|
||||
class SLVQ(ProbabilisticLVQ):
|
||||
"""Soft Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.loss = LossLayer(nllr_loss)
|
||||
@ -70,6 +73,7 @@ class SLVQ(ProbabilisticLVQ):
|
||||
|
||||
class RSLVQ(ProbabilisticLVQ):
|
||||
"""Robust Soft Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.loss = LossLayer(rslvq_loss)
|
||||
@ -81,6 +85,7 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
||||
|
||||
TODO: Use Backbone LVQ instead
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.conditional_distribution = RankScaledGaussianPrior(
|
||||
|
@ -18,6 +18,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
TODO Allow non-2D grids
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
h, w = hparams.get("shape")
|
||||
# Ignore `num_prototypes`
|
||||
@ -69,6 +70,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
|
||||
|
||||
class HeskesSOM(UnsupervisedPrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@ -78,6 +80,7 @@ class HeskesSOM(UnsupervisedPrototypeModel):
|
||||
|
||||
|
||||
class NeuralGas(UnsupervisedPrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@ -110,6 +113,7 @@ class NeuralGas(UnsupervisedPrototypeModel):
|
||||
|
||||
|
||||
class GrowingNeuralGas(NeuralGas):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
|
@ -11,6 +11,7 @@ from ..utils.utils import mesh2d
|
||||
|
||||
|
||||
class Vis2DAbstract(pl.Callback):
|
||||
|
||||
def __init__(self,
|
||||
data,
|
||||
title="Prototype Visualization",
|
||||
@ -118,6 +119,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
|
||||
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
@ -141,6 +143,7 @@ class VisGLVQ2D(Vis2DAbstract):
|
||||
|
||||
|
||||
class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
|
||||
def __init__(self, *args, map_protos=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.map_protos = map_protos
|
||||
@ -179,6 +182,7 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
|
||||
|
||||
class VisGMLVQ2D(Vis2DAbstract):
|
||||
|
||||
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.ev_proj = ev_proj
|
||||
@ -212,6 +216,7 @@ class VisGMLVQ2D(Vis2DAbstract):
|
||||
|
||||
|
||||
class VisCBC2D(Vis2DAbstract):
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
@ -235,6 +240,7 @@ class VisCBC2D(Vis2DAbstract):
|
||||
|
||||
|
||||
class VisNG2D(Vis2DAbstract):
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
@ -262,6 +268,7 @@ class VisNG2D(Vis2DAbstract):
|
||||
|
||||
|
||||
class VisImgComp(Vis2DAbstract):
|
||||
|
||||
def __init__(self,
|
||||
*args,
|
||||
random_data=0,
|
||||
|
23
setup.cfg
23
setup.cfg
@ -1,8 +1,23 @@
|
||||
[isort]
|
||||
profile = hug
|
||||
src_paths = isort, test
|
||||
|
||||
[yapf]
|
||||
based_on_style = pep8
|
||||
spaces_before_comment = 2
|
||||
split_before_logical_operator = true
|
||||
|
||||
[pylint]
|
||||
disable =
|
||||
too-many-arguments,
|
||||
too-few-public-methods,
|
||||
fixme,
|
||||
|
||||
|
||||
[pycodestyle]
|
||||
max-line-length = 79
|
||||
|
||||
[isort]
|
||||
profile = hug
|
||||
src_paths = isort, test
|
||||
multi_line_output = 3
|
||||
include_trailing_comma = True
|
||||
force_grid_wrap = 3
|
||||
use_parentheses = True
|
||||
line_length = 79
|
||||
|
@ -4,6 +4,7 @@ import unittest
|
||||
|
||||
|
||||
class TestDummy(unittest.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
pass
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user