fix: labels where on cpu in forward pass
This commit is contained in:
parent
f8ad1d83eb
commit
0af8cf36f8
@ -136,14 +136,14 @@ class SupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
plabels = self.proto_layer.labels
|
||||
_, plabels = self.proto_layer()
|
||||
winning = stratified_min_pooling(distances, plabels)
|
||||
y_pred = torch.nn.functional.softmin(winning)
|
||||
return y_pred
|
||||
|
||||
def predict_from_distances(self, distances):
|
||||
with torch.no_grad():
|
||||
plabels = self.proto_layer.labels
|
||||
_, plabels = self.proto_layer()
|
||||
y_pred = self.competition_layer(distances, plabels)
|
||||
return y_pred
|
||||
|
||||
|
@ -55,7 +55,7 @@ class GLVQ(SupervisedPrototypeModel):
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x)
|
||||
plabels = self.proto_layer.labels
|
||||
_, plabels = self.proto_layer()
|
||||
loss = self.loss(out, y, plabels)
|
||||
return out, loss
|
||||
|
||||
|
@ -10,9 +10,7 @@ from .glvq import GLVQ
|
||||
class LVQ1(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.labels
|
||||
|
||||
protos, plables = self.proto_layer()
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
# TODO Vectorized implementation
|
||||
@ -41,8 +39,7 @@ class LVQ1(NonGradientMixin, GLVQ):
|
||||
class LVQ21(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.labels
|
||||
protos, plabels = self.proto_layer()
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
|
@ -20,7 +20,7 @@ class CELVQ(GLVQ):
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x) # [None, num_protos]
|
||||
plabels = self.proto_layer.labels
|
||||
_, plabels = self.proto_layer()
|
||||
winning = stratified_min_pooling(out, plabels) # [None, num_classes]
|
||||
probs = -1.0 * winning
|
||||
batch_loss = self.loss(probs, y.long())
|
||||
@ -54,7 +54,7 @@ class ProbabilisticLVQ(GLVQ):
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.forward(x)
|
||||
plabels = self.proto_layer.labels
|
||||
_, plabels = self.proto_layer()
|
||||
batch_loss = self.loss(out, y, plabels)
|
||||
loss = batch_loss.sum()
|
||||
return loss
|
||||
|
Loading…
Reference in New Issue
Block a user