chore: improve clc-lc test

This commit is contained in:
Alexander Engelsberger 2022-05-17 17:25:51 +02:00
parent 8f08ba66ea
commit 02954044d7
No known key found for this signature in database
GPG Key ID: 72E54A9DAE51EB96
3 changed files with 133 additions and 82 deletions

View File

@ -1,5 +1,5 @@
from dataclasses import dataclass
from typing import Callable
from typing import Callable, Type
import torch
from prototorch.core.competitions import WTAC
@ -14,40 +14,48 @@ from prototorch.models.clcc.clcc_scheme import CLCCScheme
from prototorch.nn.wrappers import LambdaLayer
@dataclass
class GLVQhparams:
distribution: dict
class SupervisedScheme(CLCCScheme):
@dataclass
class HyperParameters:
distribution: dict[str, int]
component_initializer: AbstractComponentsInitializer
distance_fn: Callable = euclidean_distance
lr: float = 0.01
margin: float = 0.0
# TODO: make nicer
transfer_fn: str = "identity"
transfer_beta: float = 10.0
optimizer: torch.optim.Optimizer = torch.optim.Adam
class GLVQ(CLCCScheme):
def __init__(self, hparams: GLVQhparams) -> None:
super().__init__(hparams)
self.lr = hparams.lr
self.optimizer = hparams.optimizer
# Initializers
def init_components(self, hparams):
# initialize Component Layer
def init_components(self, hparams: HyperParameters):
self.components_layer = LabeledComponents(
distribution=hparams.distribution,
components_initializer=hparams.component_initializer,
labels_initializer=LabelsInitializer(),
)
def init_comparison(self, hparams):
# initialize Distance Layer
# ##############################################################################
# GLVQ
# ##############################################################################
class GLVQ(
SupervisedScheme, ):
"""GLVQ using the new Scheme
"""
@dataclass
class HyperParameters(SupervisedScheme.HyperParameters):
distance_fn: Callable = euclidean_distance
lr: float = 0.01
margin: float = 0.0
# TODO: make nicer
transfer_fn: str = "identity"
transfer_beta: float = 10.0
optimizer: Type[torch.optim.Optimizer] = torch.optim.Adam
def __init__(self, hparams: HyperParameters) -> None:
super().__init__(hparams)
self.lr = hparams.lr
self.optimizer = hparams.optimizer
def init_comparison(self, hparams: HyperParameters):
self.comparison_layer = LambdaLayer(hparams.distance_fn)
def init_inference(self, hparams):
def init_inference(self, hparams: HyperParameters):
self.competition_layer = WTAC()
def init_loss(self, hparams):
@ -78,7 +86,7 @@ class GLVQ(CLCCScheme):
return self.loss_layer(comparisonmeasures, target, comp_labels)
def configure_optimizers(self):
return self.optimizer(self.parameters(), lr=self.lr)
return self.optimizer(self.parameters(), lr=self.lr) # type: ignore
# Properties
@property

View File

@ -8,6 +8,7 @@ CLCC is a LVQ scheme containing 4 steps
- Competition
"""
from dataclasses import dataclass
from typing import (
Dict,
Set,
@ -20,9 +21,16 @@ from torchmetrics import Accuracy, Metric
class CLCCScheme(pl.LightningModule):
@dataclass
class HyperParameters:
...
registered_metrics: Dict[Type[Metric], Metric] = {}
registered_metric_names: Dict[Type[Metric], Set[str]] = {}
components_layer: pl.LightningModule
def __init__(self, hparams) -> None:
super().__init__()
@ -42,9 +50,14 @@ class CLCCScheme(pl.LightningModule):
self.init_model_metrics()
# internal API, called by models and callbacks
def register_torchmetric(self, name: str, metric: Metric, **metricargs):
def register_torchmetric(
self,
name: str,
metric: Type[Metric],
**metric_kwargs,
):
if metric not in self.registered_metrics:
self.registered_metrics[metric] = metric(**metricargs)
self.registered_metrics[metric] = metric(**metric_kwargs)
self.registered_metric_names[metric] = {name}
else:
self.registered_metric_names[metric].add(name)
@ -92,25 +105,25 @@ class CLCCScheme(pl.LightningModule):
# Empty Initialization
# TODO: Type hints
# TODO: Docs
def init_components(self, hparams):
def init_components(self, hparams: HyperParameters) -> None:
...
def init_latent(self, hparams):
def init_latent(self, hparams: HyperParameters) -> None:
...
def init_comparison(self, hparams):
def init_comparison(self, hparams: HyperParameters) -> None:
...
def init_competition(self, hparams):
def init_competition(self, hparams: HyperParameters) -> None:
...
def init_loss(self, hparams):
def init_loss(self, hparams: HyperParameters) -> None:
...
def init_inference(self, hparams):
def init_inference(self, hparams: HyperParameters) -> None:
...
def init_model_metrics(self):
def init_model_metrics(self) -> None:
self.register_torchmetric('accuracy', Accuracy)
# Empty Steps

View File

@ -1,55 +1,76 @@
from typing import Optional
from typing import Optional, Type
import matplotlib.pyplot as plt
import numpy as np
import prototorch as pt
import pytorch_lightning as pl
import torch
import torchmetrics
from prototorch.core.initializers import SMCI, RandomNormalCompInitializer
from prototorch.models.clcc.clcc_glvq import GLVQ, GLVQhparams
from prototorch.core import SMCI
from prototorch.models.clcc.clcc_glvq import GLVQ
from prototorch.models.clcc.clcc_scheme import CLCCScheme
from prototorch.models.vis import Visualize2DVoronoiCallback
from prototorch.models.vis import Vis2DAbstract
from prototorch.utils.utils import mesh2d
from pytorch_lightning.callbacks import EarlyStopping
from torch.utils.data import DataLoader
# NEW STUFF
# ##############################################################################
# TODO: Metrics
class MetricsTestCallback(pl.Callback):
metric_name = "test_cb_acc"
def setup(self,
trainer: pl.Trainer,
pl_module: CLCCScheme,
stage: Optional[str] = None) -> None:
pl_module.register_torchmetric(self.metric_name, torchmetrics.Accuracy)
def on_epoch_end(self, trainer: pl.Trainer,
pl_module: pl.LightningModule) -> None:
metric = trainer.logged_metrics[self.metric_name]
if metric > 0.95:
trainer.should_stop = True
class LogTorchmetricCallback(pl.Callback):
def __init__(self, name, metric, on="prediction", **metric_args) -> None:
def __init__(
self,
name,
metric: Type[torchmetrics.Metric],
on="prediction",
**metric_kwargs,
) -> None:
self.name = name
self.metric = metric
self.metric_args = metric_args
self.metric_kwargs = metric_kwargs
self.on = on
def setup(self,
def setup(
self,
trainer: pl.Trainer,
pl_module: CLCCScheme,
stage: Optional[str] = None) -> None:
stage: Optional[str] = None,
) -> None:
if self.on == "prediction":
pl_module.register_torchmetric(self.name, self.metric,
**self.metric_args)
pl_module.register_torchmetric(
self.name,
self.metric,
**self.metric_kwargs,
)
else:
raise ValueError(f"{self.on} is no valid metric hook")
class VisGLVQ2D(Vis2DAbstract):
def visualize(self, pl_module):
protos = pl_module.prototypes
plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train
ax = self.setup_ax()
self.plot_protos(ax, protos, plabels)
if x_train is not None:
self.plot_data(ax, x_train, y_train)
mesh_input, xx, yy = mesh2d(
np.vstack([x_train, protos]),
self.border,
self.resolution,
)
else:
mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
_components = pl_module.components_layer.components
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
y_pred = pl_module.predict(mesh_input)
y_pred = y_pred.cpu().reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
# TODO: Pruning
# ##############################################################################
@ -59,15 +80,17 @@ if __name__ == "__main__":
train_ds = pt.datasets.Iris(dims=[0, 2])
train_ds.targets[train_ds.targets == 2.0] = 1.0
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
train_loader = DataLoader(
train_ds,
batch_size=64,
num_workers=0,
shuffle=True)
shuffle=True,
)
#components_initializer = SMCI(train_ds)
components_initializer = RandomNormalCompInitializer(2)
components_initializer = SMCI(train_ds)
#components_initializer = RandomNormalCompInitializer(2)
hparams = GLVQhparams(
hyperparameters = GLVQ.HyperParameters(
lr=0.5,
distribution=dict(
num_classes=2,
@ -75,29 +98,36 @@ if __name__ == "__main__":
),
component_initializer=components_initializer,
)
model = GLVQ(hparams)
model = GLVQ(hyperparameters)
print(model)
# Callbacks
vis = Visualize2DVoronoiCallback(
data=train_ds,
resolution=500,
)
metrics = MetricsTestCallback()
recall = LogTorchmetricCallback('recall',
vis = VisGLVQ2D(data=train_ds)
recall = LogTorchmetricCallback(
'recall',
torchmetrics.Recall,
num_classes=2)
num_classes=2,
)
es = EarlyStopping(
monitor="recall",
min_delta=0.001,
patience=15,
mode="max",
check_on_train_epoch_end=True,
)
# Train
trainer = pl.Trainer(
callbacks=[
vis,
#metrics,
recall,
es,
],
gpus=0,
max_epochs=200,
weights_summary=None,
log_every_n_steps=1,
)
trainer.fit(model, train_loader)