prototorch_models/examples/gng_iris.py

51 lines
1.2 KiB
Python
Raw Normal View History

"""Growing Neural Gas example using the Iris dataset."""
2021-06-01 15:19:43 +00:00
import argparse
import prototorch as pt
import pytorch_lightning as pl
from prototorch.components.initializers import SelectionInitializer
from prototorch.datasets import Iris
from prototorch.models.unsupervised import GrowingNeuralGas
from torch.utils.data import DataLoader
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
2021-06-01 15:19:43 +00:00
# Prepare the data
train_ds = Iris(dims=[0, 2])
train_loader = DataLoader(train_ds, batch_size=8)
2021-06-01 15:19:43 +00:00
# Hyperparameters
hparams = dict(num_prototypes=5,
2021-06-01 15:19:43 +00:00
lr=0.1,
prototype_initializer=SelectionInitializer(train_ds.data))
# Initialize the model
model = GrowingNeuralGas(hparams)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisNG2D(data=train_loader)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
max_epochs=100,
callbacks=[vis],
)
# Training loop
trainer.fit(model, train_loader)
# Model summary
print(model)