2021-05-06 16:41:50 +00:00
|
|
|
"""Limited Rank MLVQ example using the Tecator dataset."""
|
2021-05-04 13:11:16 +00:00
|
|
|
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
from prototorch.components import initializers as cinit
|
|
|
|
from prototorch.datasets.tecator import Tecator
|
2021-05-06 12:10:09 +00:00
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
2021-05-04 13:11:16 +00:00
|
|
|
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
|
|
|
from prototorch.models.glvq import GMLVQ
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# Dataset
|
|
|
|
train_ds = Tecator(root="./datasets/", train=True)
|
|
|
|
|
|
|
|
# Dataloaders
|
|
|
|
train_loader = DataLoader(train_ds, num_workers=0, batch_size=32)
|
|
|
|
|
|
|
|
# Grab the full dataset to warm-start prototypes
|
|
|
|
x, y = next(iter(DataLoader(train_ds, batch_size=len(train_ds))))
|
|
|
|
|
|
|
|
# Hyperparameters
|
|
|
|
hparams = dict(
|
|
|
|
nclasses=2,
|
|
|
|
prototypes_per_class=2,
|
|
|
|
prototype_initializer=cinit.SMI(x, y),
|
|
|
|
input_dim=x.shape[1],
|
|
|
|
latent_dim=2,
|
|
|
|
lr=0.01,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Initialize the model
|
|
|
|
model = GMLVQ(hparams)
|
|
|
|
|
|
|
|
# Model summary
|
|
|
|
print(model)
|
|
|
|
|
|
|
|
# Callbacks
|
|
|
|
vis = VisSiameseGLVQ2D(x, y)
|
|
|
|
|
|
|
|
# Namespace hook for the visualization to work
|
|
|
|
model.backbone = model.omega_layer
|
|
|
|
|
|
|
|
# Setup trainer
|
|
|
|
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
|
|
|
|
|
|
|
|
# Training loop
|
|
|
|
trainer.fit(model, train_loader)
|