2021-04-29 17:14:33 +00:00
|
|
|
import pytorch_lightning as pl
|
|
|
|
import torch
|
2021-05-03 11:20:49 +00:00
|
|
|
from torch.optim.lr_scheduler import ExponentialLR
|
2021-04-29 17:14:33 +00:00
|
|
|
|
|
|
|
|
|
|
|
class AbstractLightningModel(pl.LightningModule):
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
|
2021-05-03 11:20:49 +00:00
|
|
|
scheduler = ExponentialLR(optimizer,
|
|
|
|
gamma=0.99,
|
|
|
|
last_epoch=-1,
|
|
|
|
verbose=False)
|
|
|
|
sch = {
|
|
|
|
"scheduler": scheduler,
|
|
|
|
"interval": "step",
|
|
|
|
} # called after each training step
|
|
|
|
return [optimizer], [sch]
|
2021-04-29 17:14:33 +00:00
|
|
|
|
|
|
|
|
|
|
|
class AbstractPrototypeModel(AbstractLightningModel):
|
|
|
|
@property
|
|
|
|
def prototypes(self):
|
|
|
|
return self.proto_layer.components.detach().numpy()
|