58 lines
1.8 KiB
Python
58 lines
1.8 KiB
Python
|
import pytorch_lightning as pl
|
||
|
import torch
|
||
|
from prototorch.functions.competitions import wtac
|
||
|
from prototorch.functions.distances import euclidean_distance
|
||
|
from prototorch.functions.initializers import get_initializer
|
||
|
from prototorch.functions.losses import glvq_loss
|
||
|
from prototorch.modules.prototypes import Prototypes1D
|
||
|
|
||
|
|
||
|
class GLVQ(pl.LightningModule):
|
||
|
"""Generalized Learning Vector Quantization."""
|
||
|
def __init__(self, lr=1e-3, **kwargs):
|
||
|
super().__init__()
|
||
|
self.lr = lr
|
||
|
self.proto_layer = Prototypes1D(**kwargs)
|
||
|
|
||
|
@property
|
||
|
def prototypes(self):
|
||
|
return self.proto_layer.prototypes.detach().numpy()
|
||
|
|
||
|
@property
|
||
|
def prototype_labels(self):
|
||
|
return self.proto_layer.prototype_labels.detach().numpy()
|
||
|
|
||
|
def forward(self, x):
|
||
|
protos = self.proto_layer.prototypes
|
||
|
dis = euclidean_distance(x, protos)
|
||
|
return dis
|
||
|
|
||
|
def configure_optimizers(self):
|
||
|
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
|
||
|
return optimizer
|
||
|
|
||
|
def training_step(self, train_batch, batch_idx):
|
||
|
x, y = train_batch
|
||
|
x = x.view(x.size(0), -1)
|
||
|
dis = self(x)
|
||
|
plabels = self.proto_layer.prototype_labels
|
||
|
mu = glvq_loss(dis, y, prototype_labels=plabels)
|
||
|
loss = mu.sum(dim=0)
|
||
|
self.log("train_loss", loss)
|
||
|
return loss
|
||
|
|
||
|
def predict(self, x):
|
||
|
with torch.no_grad():
|
||
|
d = self(x)
|
||
|
plabels = self.proto_layer.prototype_labels
|
||
|
y_pred = wtac(d, plabels)
|
||
|
return y_pred.numpy()
|
||
|
|
||
|
|
||
|
class ImageGLVQ(GLVQ):
|
||
|
"""GLVQ model that constrains the prototypes to the range [0, 1] by
|
||
|
clamping after updates.
|
||
|
"""
|
||
|
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||
|
self.proto_layer.prototypes.data.clamp_(0., 1.)
|