45 lines
1.4 KiB
Python
45 lines
1.4 KiB
Python
|
import pytorch_lightning as pl
|
||
|
import torchvision
|
||
|
from matplotlib import pyplot as plt
|
||
|
from prototorch.functions.initializers import stratified_mean
|
||
|
from prototorch.models.glvq import ImageGLVQ
|
||
|
from torch.utils.data import DataLoader, random_split
|
||
|
from torchvision import transforms
|
||
|
from torchvision.datasets import MNIST
|
||
|
|
||
|
|
||
|
def plot_protos(protos, shape=(-1, 1, 28, 28), nrow=2):
|
||
|
grid = torchvision.utils.make_grid(protos.reshape(*shape), nrow=nrow)
|
||
|
grid = grid.permute((1, 2, 0))
|
||
|
plt.imshow(grid)
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
dataset = MNIST("./datasets",
|
||
|
train=True,
|
||
|
download=True,
|
||
|
transform=transforms.ToTensor())
|
||
|
mnist_train, mnist_val = random_split(dataset, [55000, 5000])
|
||
|
|
||
|
train_loader = DataLoader(mnist_train, batch_size=1024)
|
||
|
val_loader = DataLoader(mnist_val, batch_size=1024)
|
||
|
|
||
|
model = ImageGLVQ(input_dim=28 * 28, nclasses=10, prototypes_per_class=2)
|
||
|
|
||
|
# Warm-start prototypes
|
||
|
prototypes, prototype_labels = stratified_mean(
|
||
|
x_train,
|
||
|
y_train,
|
||
|
prototype_distribution=self.prototype_distribution,
|
||
|
one_hot=one_hot_labels,
|
||
|
)
|
||
|
|
||
|
trainer = pl.Trainer(gpus=0, max_epochs=3)
|
||
|
|
||
|
trainer.fit(model, train_loader, val_loader)
|
||
|
|
||
|
protos = model.proto_layer.prototypes.detach().cpu()
|
||
|
plot_protos(protos, shape=(-1, 1, 28, 28), nrow=4)
|
||
|
plt.show(block=True)
|