prototorch_models/examples/lvqmln_iris.py

79 lines
1.9 KiB
Python
Raw Normal View History

2021-05-17 15:03:37 +00:00
"""LVQMLN example using all four dimensions of the Iris dataset."""
2021-05-21 15:55:55 +00:00
import argparse
2021-05-17 15:03:37 +00:00
import prototorch as pt
import pytorch_lightning as pl
import torch
2021-05-21 15:55:55 +00:00
class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.latent_size = latent_size
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
self.activation = torch.nn.Sigmoid()
def forward(self, x):
x = self.activation(self.dense1(x))
out = self.activation(self.dense2(x))
return out
2021-05-17 15:03:37 +00:00
if __name__ == "__main__":
2021-05-21 15:55:55 +00:00
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
2021-05-17 15:03:37 +00:00
# Dataset
train_ds = pt.datasets.Iris()
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=150)
# Hyperparameters
hparams = dict(
distribution=[1, 2, 2],
proto_lr=0.001,
bb_lr=0.001,
)
# Initialize the backbone
backbone = Backbone()
# Initialize the model
model = pt.models.LVQMLN(
hparams,
prototype_initializer=pt.components.SSI(train_ds, transform=backbone),
backbone=backbone,
)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisSiameseGLVQ2D(
data=train_ds,
map_protos=False,
border=0.1,
resolution=500,
axis_off=True,
)
# Setup trainer
2021-05-21 15:55:55 +00:00
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
)
2021-05-17 15:03:37 +00:00
# Training loop
trainer.fit(model, train_loader)