2021-04-23 15:38:29 +00:00
|
|
|
"""Neural Gas example using the Iris dataset."""
|
2021-04-23 15:30:23 +00:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
from sklearn.datasets import load_iris
|
|
|
|
from sklearn.preprocessing import StandardScaler
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
|
|
|
from prototorch.datasets.abstract import NumpyDataset
|
|
|
|
from prototorch.models.neural_gas import NeuralGas
|
|
|
|
|
|
|
|
|
|
|
|
class VisualizationCallback(pl.Callback):
|
|
|
|
def __init__(self,
|
|
|
|
x_train,
|
|
|
|
y_train,
|
|
|
|
title="Neural Gas Visualization",
|
|
|
|
cmap="viridis"):
|
|
|
|
super().__init__()
|
|
|
|
self.x_train = x_train
|
|
|
|
self.y_train = y_train
|
|
|
|
self.title = title
|
|
|
|
self.fig = plt.figure(self.title)
|
|
|
|
self.cmap = cmap
|
|
|
|
|
|
|
|
def on_epoch_end(self, trainer, pl_module: NeuralGas):
|
|
|
|
protos = pl_module.proto_layer.prototypes.detach().cpu().numpy()
|
|
|
|
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
|
|
|
|
|
|
|
# Visualize the data and the prototypes
|
|
|
|
ax = self.fig.gca()
|
|
|
|
ax.cla()
|
|
|
|
ax.set_title(self.title)
|
|
|
|
ax.set_xlabel("Data dimension 1")
|
|
|
|
ax.set_ylabel("Data dimension 2")
|
|
|
|
ax.scatter(self.x_train[:, 0],
|
|
|
|
self.x_train[:, 1],
|
|
|
|
c=self.y_train,
|
|
|
|
edgecolor="k")
|
|
|
|
ax.scatter(
|
|
|
|
protos[:, 0],
|
|
|
|
protos[:, 1],
|
|
|
|
c="k",
|
|
|
|
edgecolor="k",
|
|
|
|
marker="D",
|
|
|
|
s=50,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Draw connections
|
|
|
|
for i in range(len(protos)):
|
|
|
|
for j in range(len(protos)):
|
|
|
|
if cmat[i][j]:
|
|
|
|
ax.plot(
|
|
|
|
[protos[i, 0], protos[j, 0]],
|
|
|
|
[protos[i, 1], protos[j, 1]],
|
|
|
|
"k-",
|
|
|
|
)
|
|
|
|
|
|
|
|
plt.pause(0.01)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# Dataset
|
|
|
|
x_train, y_train = load_iris(return_X_y=True)
|
|
|
|
x_train = x_train[:, [0, 2]]
|
|
|
|
scaler = StandardScaler()
|
|
|
|
scaler.fit(x_train)
|
|
|
|
x_train = scaler.transform(x_train)
|
|
|
|
|
|
|
|
y_single_class = np.zeros_like(y_train)
|
|
|
|
train_ds = NumpyDataset(x_train, y_train)
|
|
|
|
|
|
|
|
# Dataloaders
|
|
|
|
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
|
|
|
|
|
|
|
# Hyperparameters
|
|
|
|
hparams = dict(
|
|
|
|
input_dim=x_train.shape[1],
|
|
|
|
nclasses=1,
|
|
|
|
prototypes_per_class=30,
|
|
|
|
prototype_initializer="rand",
|
2021-04-23 15:38:29 +00:00
|
|
|
lr=0.1,
|
2021-04-23 15:30:23 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# Initialize the model
|
|
|
|
model = NeuralGas(hparams, data=[x_train, y_single_class])
|
|
|
|
|
|
|
|
# Model summary
|
|
|
|
print(model)
|
|
|
|
|
|
|
|
# Callbacks
|
|
|
|
vis = VisualizationCallback(x_train, y_train)
|
|
|
|
|
|
|
|
# Setup trainer
|
|
|
|
trainer = pl.Trainer(
|
|
|
|
max_epochs=100,
|
|
|
|
callbacks=[
|
|
|
|
vis,
|
|
|
|
],
|
|
|
|
)
|
|
|
|
|
|
|
|
# Training loop
|
|
|
|
trainer.fit(model, train_loader)
|