2021-05-25 18:37:34 +00:00
|
|
|
"""LVQ models that are optimized using non-gradient methods."""
|
|
|
|
|
|
|
|
from prototorch.functions.losses import _get_dp_dm
|
|
|
|
|
2021-06-04 20:20:32 +00:00
|
|
|
from .abstract import NonGradientMixin
|
2021-05-25 18:37:34 +00:00
|
|
|
from .glvq import GLVQ
|
|
|
|
|
|
|
|
|
2021-06-04 20:20:32 +00:00
|
|
|
class LVQ1(NonGradientMixin, GLVQ):
|
2021-05-25 18:37:34 +00:00
|
|
|
"""Learning Vector Quantization 1."""
|
|
|
|
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
|
|
|
protos = self.proto_layer.components
|
|
|
|
plabels = self.proto_layer.component_labels
|
|
|
|
|
|
|
|
x, y = train_batch
|
2021-06-04 20:20:32 +00:00
|
|
|
dis = self.compute_distances(x)
|
2021-05-25 18:37:34 +00:00
|
|
|
# TODO Vectorized implementation
|
|
|
|
|
|
|
|
for xi, yi in zip(x, y):
|
2021-06-04 20:20:32 +00:00
|
|
|
d = self.compute_distances(xi.view(1, -1))
|
|
|
|
preds = self.competition_layer(d, plabels)
|
2021-05-25 18:37:34 +00:00
|
|
|
w = d.argmin(1)
|
|
|
|
if yi == preds:
|
|
|
|
shift = xi - protos[w]
|
|
|
|
else:
|
|
|
|
shift = protos[w] - xi
|
|
|
|
updated_protos = protos + 0.0
|
|
|
|
updated_protos[w] = protos[w] + (self.hparams.lr * shift)
|
|
|
|
self.proto_layer.load_state_dict({"_components": updated_protos},
|
|
|
|
strict=False)
|
|
|
|
|
|
|
|
# Logging
|
|
|
|
self.log_acc(dis, y, tag="train_acc")
|
|
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
2021-06-04 20:20:32 +00:00
|
|
|
class LVQ21(NonGradientMixin, GLVQ):
|
2021-05-25 18:37:34 +00:00
|
|
|
"""Learning Vector Quantization 2.1."""
|
|
|
|
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
|
|
|
protos = self.proto_layer.components
|
|
|
|
plabels = self.proto_layer.component_labels
|
|
|
|
|
|
|
|
x, y = train_batch
|
2021-06-04 20:20:32 +00:00
|
|
|
dis = self.compute_distances(x)
|
2021-05-25 18:37:34 +00:00
|
|
|
# TODO Vectorized implementation
|
|
|
|
|
|
|
|
for xi, yi in zip(x, y):
|
|
|
|
xi = xi.view(1, -1)
|
|
|
|
yi = yi.view(1, )
|
2021-06-04 20:20:32 +00:00
|
|
|
d = self.compute_distances(xi)
|
2021-05-25 18:37:34 +00:00
|
|
|
(_, wp), (_, wn) = _get_dp_dm(d, yi, plabels, with_indices=True)
|
|
|
|
shiftp = xi - protos[wp]
|
|
|
|
shiftn = protos[wn] - xi
|
|
|
|
updated_protos = protos + 0.0
|
|
|
|
updated_protos[wp] = protos[wp] + (self.hparams.lr * shiftp)
|
|
|
|
updated_protos[wn] = protos[wn] + (self.hparams.lr * shiftn)
|
|
|
|
self.proto_layer.load_state_dict({"_components": updated_protos},
|
|
|
|
strict=False)
|
|
|
|
|
|
|
|
# Logging
|
|
|
|
self.log_acc(dis, y, tag="train_acc")
|
|
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
2021-06-04 20:20:32 +00:00
|
|
|
class MedianLVQ(NonGradientMixin, GLVQ):
|
2021-05-25 18:37:34 +00:00
|
|
|
"""Median LVQ"""
|