139 lines
3.8 KiB
Python
139 lines
3.8 KiB
Python
|
"""
|
||
|
CLCC Scheme
|
||
|
|
||
|
CLCC is a LVQ scheme containing 4 steps
|
||
|
- Components
|
||
|
- Latent Space
|
||
|
- Comparison
|
||
|
- Competition
|
||
|
|
||
|
"""
|
||
|
import pytorch_lightning as pl
|
||
|
|
||
|
|
||
|
class CLCCScheme(pl.LightningModule):
|
||
|
def __init__(self, hparams) -> None:
|
||
|
super().__init__()
|
||
|
|
||
|
# Common Steps
|
||
|
self.init_components(hparams)
|
||
|
self.init_latent(hparams)
|
||
|
self.init_comparison(hparams)
|
||
|
self.init_competition(hparams)
|
||
|
|
||
|
# Train Steps
|
||
|
self.init_loss(hparams)
|
||
|
|
||
|
# Inference Steps
|
||
|
self.init_inference(hparams)
|
||
|
|
||
|
# API
|
||
|
def get_competion(self, batch, components):
|
||
|
latent_batch, latent_components = self.latent(batch, components)
|
||
|
# TODO: => Latent Hook
|
||
|
comparison_tensor = self.comparison(latent_batch, latent_components)
|
||
|
# TODO: => Comparison Hook
|
||
|
return comparison_tensor
|
||
|
|
||
|
def forward(self, batch):
|
||
|
# TODO: manage different datatypes?
|
||
|
components = self.components_layer()
|
||
|
# TODO: => Component Hook
|
||
|
comparison_tensor = self.get_competion(batch, components)
|
||
|
# TODO: => Competition Hook
|
||
|
return self.inference(comparison_tensor, components)
|
||
|
|
||
|
def loss_forward(self, batch):
|
||
|
# TODO: manage different datatypes?
|
||
|
components = self.components_layer()
|
||
|
# TODO: => Component Hook
|
||
|
comparison_tensor = self.get_competion(batch, components)
|
||
|
# TODO: => Competition Hook
|
||
|
return self.loss(comparison_tensor, batch, components)
|
||
|
|
||
|
# Empty Initialization
|
||
|
# TODO: Type hints
|
||
|
# TODO: Docs
|
||
|
def init_components(self, hparams):
|
||
|
...
|
||
|
|
||
|
def init_latent(self, hparams):
|
||
|
...
|
||
|
|
||
|
def init_comparison(self, hparams):
|
||
|
...
|
||
|
|
||
|
def init_competition(self, hparams):
|
||
|
...
|
||
|
|
||
|
def init_loss(self, hparams):
|
||
|
...
|
||
|
|
||
|
def init_inference(self, hparams):
|
||
|
...
|
||
|
|
||
|
# Empty Steps
|
||
|
# TODO: Type hints
|
||
|
def components(self):
|
||
|
"""
|
||
|
This step has no input.
|
||
|
|
||
|
It returns the components.
|
||
|
"""
|
||
|
raise NotImplementedError(
|
||
|
"The components step has no reasonable default.")
|
||
|
|
||
|
def latent(self, batch, components):
|
||
|
"""
|
||
|
The latent step receives the data batch and the components.
|
||
|
It can transform both by an arbitrary function.
|
||
|
|
||
|
It returns the transformed batch and components, each of the same length as the original input.
|
||
|
"""
|
||
|
return batch, components
|
||
|
|
||
|
def comparison(self, batch, components):
|
||
|
"""
|
||
|
Takes a batch of size N and the componentsset of size M.
|
||
|
|
||
|
It returns an NxMxD tensor containing D (usually 1) pairwise comparison measures.
|
||
|
"""
|
||
|
raise NotImplementedError(
|
||
|
"The comparison step has no reasonable default.")
|
||
|
|
||
|
def competition(self, comparisonmeasures, components):
|
||
|
"""
|
||
|
Takes the tensor of comparison measures.
|
||
|
|
||
|
Assigns a competition vector to each class.
|
||
|
"""
|
||
|
raise NotImplementedError(
|
||
|
"The competition step has no reasonable default.")
|
||
|
|
||
|
def loss(self, comparisonmeasures, batch, components):
|
||
|
"""
|
||
|
Takes the tensor of competition measures.
|
||
|
|
||
|
Calculates a single loss value
|
||
|
"""
|
||
|
raise NotImplementedError("The loss step has no reasonable default.")
|
||
|
|
||
|
def inference(self, comparisonmeasures, components):
|
||
|
"""
|
||
|
Takes the tensor of competition measures.
|
||
|
|
||
|
Returns the inferred vector.
|
||
|
"""
|
||
|
raise NotImplementedError(
|
||
|
"The inference step has no reasonable default.")
|
||
|
|
||
|
# Lightning Hooks
|
||
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||
|
return self.loss_forward(batch)
|
||
|
|
||
|
def validation_step(self, batch, batch_idx):
|
||
|
return self.loss_forward(batch)
|
||
|
|
||
|
def test_step(self, batch, batch_idx):
|
||
|
return self.loss_forward(batch)
|