prototorch_models/examples/siamese_glvq_iris.py

84 lines
2.1 KiB
Python
Raw Normal View History

2021-04-27 12:35:17 +00:00
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
2021-05-21 15:55:55 +00:00
import argparse
import warnings
2021-05-21 15:55:55 +00:00
import prototorch as pt
2021-04-27 12:35:17 +00:00
import pytorch_lightning as pl
import torch
from prototorch.models import SiameseGLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
2021-04-27 12:35:17 +00:00
class Backbone(torch.nn.Module):
2021-04-27 12:35:17 +00:00
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.latent_size = latent_size
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
2021-05-17 15:03:37 +00:00
self.activation = torch.nn.Sigmoid()
2021-04-27 12:35:17 +00:00
def forward(self, x):
2021-05-17 15:03:37 +00:00
x = self.activation(self.dense1(x))
out = self.activation(self.dense2(x))
return out
2021-04-27 12:35:17 +00:00
if __name__ == "__main__":
2021-05-21 15:55:55 +00:00
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
2021-04-27 12:35:17 +00:00
# Dataset
2021-05-11 15:22:02 +00:00
train_ds = pt.datasets.Iris()
2021-04-27 12:35:17 +00:00
# Reproducibility
seed_everything(seed=2)
2021-04-27 12:35:17 +00:00
# Dataloaders
train_loader = DataLoader(train_ds, batch_size=150)
2021-04-27 12:35:17 +00:00
# Hyperparameters
hparams = dict(
2021-05-11 14:15:08 +00:00
distribution=[1, 2, 3],
proto_lr=0.01,
bb_lr=0.01,
2021-04-27 12:35:17 +00:00
)
2021-05-17 15:03:37 +00:00
# Initialize the backbone
backbone = Backbone()
2021-04-27 12:35:17 +00:00
# Initialize the model
model = SiameseGLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
2021-05-17 15:03:37 +00:00
backbone=backbone,
2021-05-19 14:30:19 +00:00
both_path_gradients=False,
)
2021-04-27 12:35:17 +00:00
# Callbacks
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
2021-04-27 12:35:17 +00:00
# Setup trainer
2021-05-21 15:55:55 +00:00
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
2021-05-21 15:55:55 +00:00
)
2021-04-27 12:35:17 +00:00
# Training loop
trainer.fit(model, train_loader)