prototorch_models/examples/knn_iris.py

58 lines
1.3 KiB
Python
Raw Normal View History

2021-06-04 20:21:28 +00:00
"""k-NN example using the Iris dataset from scikit-learn."""
2021-05-11 15:22:02 +00:00
2021-05-21 15:55:55 +00:00
import argparse
2021-06-04 20:21:28 +00:00
import prototorch as pt
2021-05-11 15:22:02 +00:00
import pytorch_lightning as pl
import torch
2021-05-21 15:55:55 +00:00
from sklearn.datasets import load_iris
2021-05-11 15:22:02 +00:00
if __name__ == "__main__":
2021-05-21 15:55:55 +00:00
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
2021-05-11 15:22:02 +00:00
# Dataset
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders
2021-05-30 22:52:16 +00:00
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
2021-05-11 15:22:02 +00:00
# Hyperparameters
2021-06-04 20:21:28 +00:00
hparams = dict(k=5)
2021-05-11 15:22:02 +00:00
# Initialize the model
model = pt.models.KNN(hparams, data=train_ds)
2021-06-04 20:21:28 +00:00
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
2021-05-11 15:22:02 +00:00
# Callbacks
2021-06-04 20:21:28 +00:00
vis = pt.models.VisGLVQ2D(
data=(x_train, y_train),
resolution=200,
block=True,
)
2021-05-11 15:22:02 +00:00
# Setup trainer
2021-05-21 15:55:55 +00:00
trainer = pl.Trainer.from_argparse_args(
args,
2021-06-04 20:21:28 +00:00
max_epochs=1,
2021-05-21 15:55:55 +00:00
callbacks=[vis],
2021-06-04 20:21:28 +00:00
weights_summary="full",
2021-05-21 15:55:55 +00:00
)
2021-05-11 15:22:02 +00:00
# Training loop
# This is only for visualization. k-NN has no training phase.
trainer.fit(model, train_loader)
# Recall
y_pred = model.predict(torch.tensor(x_train))
print(y_pred)