53 lines
1.3 KiB
Python
53 lines
1.3 KiB
Python
|
"""Median-LVQ example using the Iris dataset."""
|
||
|
|
||
|
import argparse
|
||
|
|
||
|
import prototorch as pt
|
||
|
import pytorch_lightning as pl
|
||
|
import torch
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
# Command-line arguments
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser = pl.Trainer.add_argparse_args(parser)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
# Dataset
|
||
|
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||
|
|
||
|
# Dataloaders
|
||
|
train_loader = torch.utils.data.DataLoader(
|
||
|
train_ds,
|
||
|
batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches
|
||
|
)
|
||
|
|
||
|
# Initialize the model
|
||
|
model = pt.models.MedianLVQ(
|
||
|
hparams=dict(distribution=(3, 2), lr=0.01),
|
||
|
prototypes_initializer=pt.initializers.SSCI(train_ds),
|
||
|
)
|
||
|
|
||
|
# Compute intermediate input and output sizes
|
||
|
model.example_input_array = torch.zeros(4, 2)
|
||
|
|
||
|
# Callbacks
|
||
|
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||
|
es = pl.callbacks.EarlyStopping(
|
||
|
monitor="train_acc",
|
||
|
min_delta=0.01,
|
||
|
patience=5,
|
||
|
mode="max",
|
||
|
verbose=True,
|
||
|
check_on_train_epoch_end=True,
|
||
|
)
|
||
|
|
||
|
# Setup trainer
|
||
|
trainer = pl.Trainer.from_argparse_args(
|
||
|
args,
|
||
|
callbacks=[vis, es],
|
||
|
weights_summary="full",
|
||
|
)
|
||
|
|
||
|
# Training loop
|
||
|
trainer.fit(model, train_loader)
|