prototorch_models/examples/probabilistic.py

52 lines
1.2 KiB
Python
Raw Normal View History

2021-05-30 22:52:16 +00:00
"""Probabilistic-LVQ example using the Iris dataset."""
2021-05-25 18:26:15 +00:00
import argparse
import pytorch_lightning as pl
import torch
2021-05-30 22:52:16 +00:00
import prototorch as pt
2021-05-25 18:26:15 +00:00
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
2021-05-30 22:52:16 +00:00
train_ds = pt.datasets.Iris(dims=[0, 2])
2021-05-25 18:26:15 +00:00
# Dataloaders
2021-05-30 22:52:16 +00:00
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
2021-05-25 18:26:15 +00:00
# Hyperparameters
num_classes = 3
prototypes_per_class = 2
hparams = dict(
distribution=(num_classes, prototypes_per_class),
lr=0.05,
2021-05-30 22:52:16 +00:00
variance=1.0,
2021-05-25 18:26:15 +00:00
)
# Initialize the model
2021-05-28 15:13:06 +00:00
model = pt.models.probabilistic.LikelihoodRatioLVQ(
2021-05-25 18:26:15 +00:00
hparams,
optimizer=torch.optim.Adam,
2021-05-30 22:52:16 +00:00
# prototype_initializer=pt.components.UniformInitializer(2),
prototype_initializer=pt.components.SMI(train_ds),
2021-05-25 18:26:15 +00:00
)
print(model)
2021-05-25 18:26:15 +00:00
# Callbacks
2021-05-30 22:52:16 +00:00
vis = pt.models.VisGLVQ2D(data=train_ds)
2021-05-25 18:26:15 +00:00
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
)
# Training loop
trainer.fit(model, train_loader)