prototorch_models/examples/grlvq_spiral.py

58 lines
1.6 KiB
Python
Raw Normal View History

2021-05-06 16:42:06 +00:00
"""GMLVQ example using all four dimensions of the Iris dataset."""
import pytorch_lightning as pl
import torch
from prototorch.components import initializers as cinit
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import load_iris
from torch.utils.data import DataLoader
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
from prototorch.models.glvq import GRLVQ
from sklearn.preprocessing import StandardScaler
from prototorch.datasets.spiral import make_spiral
class PrintRelevanceCallback(pl.Callback):
def on_epoch_end(self, trainer, pl_module: GRLVQ):
print(pl_module.relevance_profile)
if __name__ == "__main__":
# Dataset
x_train, y_train = make_spiral(n_samples=1000, noise=0.3)
train_ds = NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
# Hyperparameters
hparams = dict(
nclasses=2,
prototypes_per_class=20,
prototype_initializer=cinit.SSI(torch.Tensor(x_train),
torch.Tensor(y_train)),
#prototype_initializer=cinit.UniformInitializer(2),
input_dim=x_train.shape[1],
lr=0.1,
#transfer_function="sigmoid_beta",
)
# Initialize the model
model = GRLVQ(hparams)
# Model summary
print(model)
# Callbacks
vis = VisSiameseGLVQ2D(x_train, y_train)
debug = PrintRelevanceCallback()
# Setup trainer
trainer = pl.Trainer(max_epochs=200, callbacks=[vis, debug])
# Training loop
trainer.fit(model, train_loader)