63 lines
1.7 KiB
Python
63 lines
1.7 KiB
Python
|
"""GMLVQ example using all four dimensions of the Iris dataset."""
|
||
|
|
||
|
import pytorch_lightning as pl
|
||
|
import torch
|
||
|
from prototorch.components import initializers as cinit
|
||
|
from prototorch.datasets.abstract import NumpyDataset
|
||
|
from sklearn.datasets import load_iris
|
||
|
from torch.utils.data import DataLoader
|
||
|
|
||
|
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||
|
from prototorch.models.glvq import GRLVQ
|
||
|
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
|
||
|
|
||
|
class PrintRelevanceCallback(pl.Callback):
|
||
|
def on_epoch_end(self, trainer, pl_module: GRLVQ):
|
||
|
print(pl_module.relevance_profile)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
# Dataset
|
||
|
x_train, y_train = load_iris(return_X_y=True)
|
||
|
x_train = x_train[:, [0, 2]]
|
||
|
scaler = StandardScaler()
|
||
|
scaler.fit(x_train)
|
||
|
x_train = scaler.transform(x_train)
|
||
|
train_ds = NumpyDataset(x_train, y_train)
|
||
|
|
||
|
# Dataloaders
|
||
|
train_loader = DataLoader(train_ds,
|
||
|
num_workers=0,
|
||
|
batch_size=50,
|
||
|
shuffle=True)
|
||
|
|
||
|
# Hyperparameters
|
||
|
hparams = dict(
|
||
|
nclasses=3,
|
||
|
prototypes_per_class=1,
|
||
|
#prototype_initializer=cinit.SMI(torch.Tensor(x_train),
|
||
|
# torch.Tensor(y_train)),
|
||
|
prototype_initializer=cinit.UniformInitializer(2),
|
||
|
input_dim=x_train.shape[1],
|
||
|
lr=0.1,
|
||
|
#transfer_function="sigmoid_beta",
|
||
|
)
|
||
|
|
||
|
# Initialize the model
|
||
|
model = GRLVQ(hparams)
|
||
|
|
||
|
# Model summary
|
||
|
print(model)
|
||
|
|
||
|
# Callbacks
|
||
|
vis = VisSiameseGLVQ2D(x_train, y_train)
|
||
|
debug = PrintRelevanceCallback()
|
||
|
|
||
|
# Setup trainer
|
||
|
trainer = pl.Trainer(max_epochs=200, callbacks=[vis, debug])
|
||
|
|
||
|
# Training loop
|
||
|
trainer.fit(model, train_loader)
|