109 lines
3.3 KiB
Python
109 lines
3.3 KiB
Python
"""ProtoTorch "siamese" GMLVQ example using Tecator."""
|
|
|
|
import matplotlib.pyplot as plt
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
from prototorch.datasets.tecator import Tecator
|
|
from prototorch.functions.distances import sed
|
|
from prototorch.functions.normalizations import normalize_omegat_
|
|
from prototorch.modules import Prototypes1D
|
|
from prototorch.modules.losses import GLVQLoss
|
|
from prototorch.utils.colors import handles_and_colors
|
|
|
|
# Prepare the dataset and dataloader
|
|
train_data = Tecator(root='./artifacts', train=True)
|
|
train_loader = DataLoader(train_data, batch_size=128, shuffle=True)
|
|
|
|
|
|
class Model(torch.nn.Module):
|
|
def __init__(self, **kwargs):
|
|
"""GMLVQ model as a siamese network."""
|
|
super().__init__()
|
|
x, y = train_data.data, train_data.targets
|
|
self.p1 = Prototypes1D(input_dim=100,
|
|
prototypes_per_class=2,
|
|
nclasses=2,
|
|
prototype_initializer='stratified_random',
|
|
data=[x, y])
|
|
self.omega = torch.nn.Linear(in_features=100,
|
|
out_features=100,
|
|
bias=False)
|
|
torch.nn.init.eye_(self.omega.weight)
|
|
|
|
def forward(self, x):
|
|
protos = self.p1.prototypes
|
|
plabels = self.p1.prototype_labels
|
|
|
|
# Process `x` and `protos` through `omega`
|
|
x_map = self.omega(x)
|
|
protos_map = self.omega(protos)
|
|
|
|
# Compute distances and output
|
|
dis = sed(x_map, protos_map)
|
|
return dis, plabels
|
|
|
|
|
|
# Build the GLVQ model
|
|
model = Model()
|
|
|
|
# Print a summary of the model
|
|
print(model)
|
|
|
|
# Optimize using Adam optimizer from `torch.optim`
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.001_0)
|
|
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=75, gamma=0.1)
|
|
criterion = GLVQLoss(squashing='identity', beta=10)
|
|
|
|
# Training loop
|
|
for epoch in range(150):
|
|
epoch_loss = 0.0 # zero-out epoch loss
|
|
optimizer.zero_grad() # zero-out gradients
|
|
for xb, yb in train_loader:
|
|
# Compute loss
|
|
distances, plabels = model(xb)
|
|
loss = criterion([distances, plabels], yb)
|
|
epoch_loss += loss.item()
|
|
|
|
# Backprop
|
|
loss.backward()
|
|
|
|
# Normalize omega
|
|
normalize_omegat_(model.omega.weight)
|
|
|
|
# Take a gradient descent step
|
|
optimizer.step()
|
|
scheduler.step()
|
|
|
|
lr = optimizer.param_groups[0]['lr']
|
|
print(f'Epoch: {epoch + 1:03d} Loss: {epoch_loss:06.02f} lr: {lr:07.06f}')
|
|
|
|
# Get the omega matrix form the model
|
|
omega = model.omega.weight.data.numpy().T
|
|
|
|
# Visualize the lambda matrix
|
|
title = 'Lambda Matrix Visualization'
|
|
fig = plt.figure(title)
|
|
ax = fig.gca()
|
|
ax.set_title(title)
|
|
im = ax.imshow(omega.dot(omega.T), cmap='viridis')
|
|
plt.show()
|
|
|
|
# Get the prototypes form the model
|
|
protos = model.p1.prototypes.data.numpy()
|
|
plabels = model.p1.prototype_labels
|
|
|
|
# Visualize the prototypes
|
|
title = 'Tecator Prototypes'
|
|
fig = plt.figure(title)
|
|
ax = fig.gca()
|
|
ax.set_title(title)
|
|
ax.set_xlabel('Spectral frequencies')
|
|
ax.set_ylabel('Absorption')
|
|
clabels = ['Class 0 - Low fat', 'Class 1 - High fat']
|
|
handles, colors = handles_and_colors(clabels, marker='line')
|
|
for x, y in zip(protos, plabels):
|
|
ax.plot(x, c=colors[int(y)])
|
|
ax.legend(handles, clabels)
|
|
plt.show()
|