2021-01-14 10:04:43 +01:00

90 lines
3.0 KiB
Python

import torch
def calculate_prototype_accuracy(y_pred, y_true, plabels):
"""Computes the accuracy of a prototype based model.
via Winner-Takes-All rule.
Requirement:
y_pred.shape == y_true.shape
unique(y_pred) in plabels
"""
with torch.no_grad():
idx = torch.argmin(y_pred, axis=1)
return torch.true_divide(torch.sum(y_true == plabels[idx]),
len(y_pred)) * 100
def predict_label(y_pred, plabels):
r""" Predicts labels given a prediction of a prototype based model.
"""
with torch.no_grad():
return plabels[torch.argmin(y_pred, 1)]
def mixed_shape(inputs):
if not torch.is_tensor(inputs):
raise ValueError('Input must be a tensor.')
else:
int_shape = list(inputs.shape)
# sometimes int_shape returns mixed integer types
int_shape = [int(i) if i is not None else i for i in int_shape]
tensor_shape = inputs.shape
for i, s in enumerate(int_shape):
if s is None:
int_shape[i] = tensor_shape[i]
return tuple(int_shape)
def equal_int_shape(shape_1, shape_2):
if not isinstance(shape_1,
(tuple, list)) or not isinstance(shape_2, (tuple, list)):
raise ValueError('Input shapes must list or tuple.')
for shape in [shape_1, shape_2]:
if not all([isinstance(x, int) or x is None for x in shape]):
raise ValueError(
'Input shapes must be list or tuple of int and None values.')
if len(shape_1) != len(shape_2):
return False
else:
for axis, value in enumerate(shape_1):
if value is not None and shape_2[axis] not in {value, None}:
return False
return True
def _check_shapes(signal_int_shape, proto_int_shape):
if len(signal_int_shape) < 4:
raise ValueError(
"The number of signal dimensions must be >=4. You provide: " +
str(len(signal_int_shape)))
if len(proto_int_shape) < 2:
raise ValueError(
"The number of proto dimensions must be >=2. You provide: " +
str(len(proto_int_shape)))
if not equal_int_shape(signal_int_shape[3:], proto_int_shape[1:]):
raise ValueError(
"The atom shape of signals must be equal protos. You provide: signals.shape[3:]="
+ str(signal_int_shape[3:]) + " != protos.shape[1:]=" +
str(proto_int_shape[1:]))
# not a sparse signal
if signal_int_shape[1] != 1:
if not equal_int_shape(signal_int_shape[1:2], proto_int_shape[0:1]):
raise ValueError(
"If the signal is not sparse, the number of prototypes must be equal in signals and "
"protos. You provide: " + str(signal_int_shape[1]) + " != " +
str(proto_int_shape[0]))
return True
def _int_and_mixed_shape(tensor):
shape = mixed_shape(tensor)
int_shape = tuple([i if isinstance(i, int) else None for i in shape])
return shape, int_shape