280 lines
11 KiB
Python
280 lines
11 KiB
Python
"""ProtoTorch modules test suite."""
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from prototorch.modules import losses, prototypes
|
|
|
|
|
|
class TestPrototypes(unittest.TestCase):
|
|
def setUp(self):
|
|
self.x = torch.tensor(
|
|
[[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]],
|
|
dtype=torch.float32)
|
|
self.y = torch.tensor([0, 0, 1, 1])
|
|
self.gen = torch.manual_seed(42)
|
|
|
|
def test_prototypes1d_init_without_input_dim(self):
|
|
with self.assertRaises(NameError):
|
|
_ = prototypes.Prototypes1D(nclasses=2)
|
|
|
|
def test_prototypes1d_init_without_nclasses(self):
|
|
with self.assertRaises(NameError):
|
|
_ = prototypes.Prototypes1D(input_dim=1)
|
|
|
|
def test_prototypes1d_init_with_nclasses_1(self):
|
|
with self.assertWarns(UserWarning):
|
|
_ = prototypes.Prototypes1D(nclasses=1, input_dim=1)
|
|
|
|
def test_prototypes1d_init_without_pdist(self):
|
|
p1 = prototypes.Prototypes1D(input_dim=6,
|
|
nclasses=2,
|
|
prototypes_per_class=4,
|
|
prototype_initializer='ones')
|
|
protos = p1.prototypes
|
|
actual = protos.detach().numpy()
|
|
desired = torch.ones(8, 6)
|
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
|
desired,
|
|
decimal=5)
|
|
self.assertIsNone(mismatch)
|
|
|
|
def test_prototypes1d_init_without_data(self):
|
|
pdist = [2, 2]
|
|
p1 = prototypes.Prototypes1D(input_dim=3,
|
|
prototype_distribution=pdist,
|
|
prototype_initializer='zeros')
|
|
protos = p1.prototypes
|
|
actual = protos.detach().numpy()
|
|
desired = torch.zeros(4, 3)
|
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
|
desired,
|
|
decimal=5)
|
|
self.assertIsNone(mismatch)
|
|
|
|
def test_prototypes1d_proto_init_without_data(self):
|
|
with self.assertWarns(UserWarning):
|
|
_ = prototypes.Prototypes1D(
|
|
input_dim=3,
|
|
nclasses=2,
|
|
prototypes_per_class=1,
|
|
prototype_initializer='stratified_mean',
|
|
data=None)
|
|
|
|
def test_prototypes1d_init_torch_pdist(self):
|
|
pdist = torch.tensor([2, 2])
|
|
p1 = prototypes.Prototypes1D(input_dim=3,
|
|
prototype_distribution=pdist,
|
|
prototype_initializer='zeros')
|
|
protos = p1.prototypes
|
|
actual = protos.detach().numpy()
|
|
desired = torch.zeros(4, 3)
|
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
|
desired,
|
|
decimal=5)
|
|
self.assertIsNone(mismatch)
|
|
|
|
def test_prototypes1d_init_without_inputdim_with_data(self):
|
|
_ = prototypes.Prototypes1D(nclasses=2,
|
|
prototypes_per_class=1,
|
|
prototype_initializer='stratified_mean',
|
|
data=[[[1.], [0.]], [1, 0]])
|
|
|
|
def test_prototypes1d_init_with_int_data(self):
|
|
_ = prototypes.Prototypes1D(nclasses=2,
|
|
prototypes_per_class=1,
|
|
prototype_initializer='stratified_mean',
|
|
data=[[[1], [0]], [1, 0]])
|
|
|
|
def test_prototypes1d_init_one_hot_without_data(self):
|
|
_ = prototypes.Prototypes1D(input_dim=1,
|
|
nclasses=2,
|
|
prototypes_per_class=1,
|
|
prototype_initializer='stratified_mean',
|
|
data=None,
|
|
one_hot_labels=True)
|
|
|
|
def test_prototypes1d_init_one_hot_labels_false(self):
|
|
"""Test if ValueError is raised when `one_hot_labels` is set to `False`
|
|
but the provided `data` has one-hot encoded labels.
|
|
"""
|
|
with self.assertRaises(ValueError):
|
|
_ = prototypes.Prototypes1D(
|
|
input_dim=1,
|
|
nclasses=2,
|
|
prototypes_per_class=1,
|
|
prototype_initializer='stratified_mean',
|
|
data=([[0.], [1.]], [[0, 1], [1, 0]]),
|
|
one_hot_labels=False)
|
|
|
|
def test_prototypes1d_init_1d_y_data_one_hot_labels_true(self):
|
|
"""Test if ValueError is raised when `one_hot_labels` is set to `True`
|
|
but the provided `data` does not contain one-hot encoded labels.
|
|
"""
|
|
with self.assertRaises(ValueError):
|
|
_ = prototypes.Prototypes1D(
|
|
input_dim=1,
|
|
nclasses=2,
|
|
prototypes_per_class=1,
|
|
prototype_initializer='stratified_mean',
|
|
data=([[0.], [1.]], [0, 1]),
|
|
one_hot_labels=True)
|
|
|
|
def test_prototypes1d_init_one_hot_labels_true(self):
|
|
"""Test if ValueError is raised when `one_hot_labels` is set to `True`
|
|
but the provided `data` contains 2D targets but
|
|
does not contain one-hot encoded labels.
|
|
"""
|
|
with self.assertRaises(ValueError):
|
|
_ = prototypes.Prototypes1D(
|
|
input_dim=1,
|
|
nclasses=2,
|
|
prototypes_per_class=1,
|
|
prototype_initializer='stratified_mean',
|
|
data=([[0.], [1.]], [[0], [1]]),
|
|
one_hot_labels=True)
|
|
|
|
def test_prototypes1d_init_with_int_dtype(self):
|
|
with self.assertRaises(RuntimeError):
|
|
_ = prototypes.Prototypes1D(
|
|
nclasses=2,
|
|
prototypes_per_class=1,
|
|
prototype_initializer='stratified_mean',
|
|
data=[[[1], [0]], [1, 0]],
|
|
dtype=torch.int32)
|
|
|
|
def test_prototypes1d_inputndim_with_data(self):
|
|
with self.assertRaises(ValueError):
|
|
_ = prototypes.Prototypes1D(input_dim=1,
|
|
nclasses=1,
|
|
prototypes_per_class=1,
|
|
data=[[1.], [1]])
|
|
|
|
def test_prototypes1d_inputdim_with_data(self):
|
|
with self.assertRaises(ValueError):
|
|
_ = prototypes.Prototypes1D(
|
|
input_dim=2,
|
|
nclasses=2,
|
|
prototypes_per_class=1,
|
|
prototype_initializer='stratified_mean',
|
|
data=[[[1.], [0.]], [1, 0]])
|
|
|
|
def test_prototypes1d_nclasses_with_data(self):
|
|
"""Test ValueError raise if provided `nclasses` is not the same
|
|
as the one computed from the provided `data`.
|
|
"""
|
|
with self.assertRaises(ValueError):
|
|
_ = prototypes.Prototypes1D(
|
|
input_dim=1,
|
|
nclasses=1,
|
|
prototypes_per_class=1,
|
|
prototype_initializer='stratified_mean',
|
|
data=[[[1.], [2.]], [1, 2]])
|
|
|
|
def test_prototypes1d_init_with_ppc(self):
|
|
p1 = prototypes.Prototypes1D(data=[self.x, self.y],
|
|
prototypes_per_class=2,
|
|
prototype_initializer='zeros')
|
|
protos = p1.prototypes
|
|
actual = protos.detach().numpy()
|
|
desired = torch.zeros(4, 3)
|
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
|
desired,
|
|
decimal=5)
|
|
self.assertIsNone(mismatch)
|
|
|
|
def test_prototypes1d_init_with_pdist(self):
|
|
p1 = prototypes.Prototypes1D(data=[self.x, self.y],
|
|
prototype_distribution=[6, 9],
|
|
prototype_initializer='zeros')
|
|
protos = p1.prototypes
|
|
actual = protos.detach().numpy()
|
|
desired = torch.zeros(15, 3)
|
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
|
desired,
|
|
decimal=5)
|
|
self.assertIsNone(mismatch)
|
|
|
|
def test_prototypes1d_func_initializer(self):
|
|
def my_initializer(*args, **kwargs):
|
|
return torch.full((2, 99), 99.0), torch.tensor([0, 1])
|
|
|
|
p1 = prototypes.Prototypes1D(input_dim=99,
|
|
nclasses=2,
|
|
prototypes_per_class=1,
|
|
prototype_initializer=my_initializer)
|
|
protos = p1.prototypes
|
|
actual = protos.detach().numpy()
|
|
desired = 99 * torch.ones(2, 99)
|
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
|
desired,
|
|
decimal=5)
|
|
self.assertIsNone(mismatch)
|
|
|
|
def test_prototypes1d_forward(self):
|
|
p1 = prototypes.Prototypes1D(data=[self.x, self.y])
|
|
protos, _ = p1()
|
|
actual = protos.detach().numpy()
|
|
desired = torch.ones(2, 3)
|
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
|
desired,
|
|
decimal=5)
|
|
self.assertIsNone(mismatch)
|
|
|
|
def test_prototypes1d_dist_validate(self):
|
|
p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0])
|
|
with self.assertWarns(UserWarning):
|
|
_ = p1._validate_prototype_distribution()
|
|
|
|
def test_prototypes1d_validate_extra_repr_not_empty(self):
|
|
p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0])
|
|
rep = p1.extra_repr()
|
|
self.assertNotEqual(rep, '')
|
|
|
|
def tearDown(self):
|
|
del self.x, self.y, self.gen
|
|
_ = torch.seed()
|
|
|
|
|
|
class TestLosses(unittest.TestCase):
|
|
def setUp(self):
|
|
pass
|
|
|
|
def test_glvqloss_init(self):
|
|
_ = losses.GLVQLoss(0, 'swish_beta', beta=20)
|
|
|
|
def test_glvqloss_forward_1ppc(self):
|
|
criterion = losses.GLVQLoss(margin=0,
|
|
squashing='sigmoid_beta',
|
|
beta=100)
|
|
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
|
|
labels = torch.tensor([0, 1])
|
|
targets = torch.ones(100)
|
|
outputs = [d, labels]
|
|
loss = criterion(outputs, targets)
|
|
loss_value = loss.item()
|
|
self.assertAlmostEqual(loss_value, 0.0)
|
|
|
|
def test_glvqloss_forward_2ppc(self):
|
|
criterion = losses.GLVQLoss(margin=0,
|
|
squashing='sigmoid_beta',
|
|
beta=100)
|
|
d = torch.stack([
|
|
torch.ones(100),
|
|
torch.ones(100),
|
|
torch.zeros(100),
|
|
torch.ones(100)
|
|
],
|
|
dim=1)
|
|
labels = torch.tensor([0, 0, 1, 1])
|
|
targets = torch.ones(100)
|
|
outputs = [d, labels]
|
|
loss = criterion(outputs, targets)
|
|
loss_value = loss.item()
|
|
self.assertAlmostEqual(loss_value, 0.0)
|
|
|
|
def tearDown(self):
|
|
pass
|