"""ProtoTorch core test suite""" import unittest import numpy as np import pytest import torch import prototorch as pt from prototorch.utils import parse_distribution # Utils def test_parse_distribution_dict_0(): distribution = {"num_classes": 1, "per_class": 0} distribution = parse_distribution(distribution) assert distribution == {0: 0} def test_parse_distribution_dict_1(): distribution = dict(num_classes=3, per_class=2) distribution = parse_distribution(distribution) assert distribution == {0: 2, 1: 2, 2: 2} def test_parse_distribution_dict_2(): distribution = {0: 1, 2: 2, -1: 3} distribution = parse_distribution(distribution) assert distribution == {0: 1, 2: 2, -1: 3} def test_parse_distribution_tuple(): distribution = (2, 3) distribution = parse_distribution(distribution) assert distribution == {0: 3, 1: 3} def test_parse_distribution_list(): distribution = [1, 1, 0, 2] distribution = parse_distribution(distribution) assert distribution == {0: 1, 1: 1, 2: 0, 3: 2} def test_parse_distribution_custom_labels(): distribution = [1, 1, 0, 2] clabels = [1, 2, 5, 3] distribution = parse_distribution(distribution, clabels) assert distribution == {1: 1, 2: 1, 5: 0, 3: 2} # Components initializers def test_literal_comp_generate(): protos = torch.rand(4, 3, 5, 5) c = pt.initializers.LiteralCompInitializer(protos) components = c.generate([]) assert torch.allclose(components, protos) def test_literal_comp_generate_from_list(): protos = [[0, 1], [2, 3], [4, 5]] c = pt.initializers.LiteralCompInitializer(protos) with pytest.warns(UserWarning): components = c.generate([]) assert torch.allclose(components, torch.Tensor(protos)) def test_shape_aware_raises_error(): with pytest.raises(TypeError): _ = pt.initializers.ShapeAwareCompInitializer(shape=(2, )) def test_data_aware_comp_generate(): protos = torch.rand(4, 3, 5, 5) c = pt.initializers.DataAwareCompInitializer(protos) components = c.generate(num_components="IgnoreMe!") assert torch.allclose(components, protos) def test_class_aware_comp_generate(): protos = torch.rand(4, 2, 3, 5, 5) plabels = torch.tensor([0, 0, 1, 1]).long() c = pt.initializers.ClassAwareCompInitializer([protos, plabels]) components = c.generate(distribution=[]) assert torch.allclose(components, protos) def test_zeros_comp_generate(): shape = (3, 5, 5) c = pt.initializers.ZerosCompInitializer(shape) components = c.generate(num_components=4) assert torch.allclose(components, torch.zeros(4, 3, 5, 5)) def test_ones_comp_generate(): c = pt.initializers.OnesCompInitializer(2) components = c.generate(num_components=3) assert torch.allclose(components, torch.ones(3, 2)) def test_fill_value_comp_generate(): c = pt.initializers.FillValueCompInitializer(2, 0.0) components = c.generate(num_components=3) assert torch.allclose(components, torch.zeros(3, 2)) def test_uniform_comp_generate_min_max_bound(): c = pt.initializers.UniformCompInitializer(2, -1.0, 1.0) components = c.generate(num_components=1024) assert components.min() >= -1.0 assert components.max() <= 1.0 def test_random_comp_generate_mean(): c = pt.initializers.RandomNormalCompInitializer(2, -1.0) components = c.generate(num_components=1024) assert torch.allclose(components.mean(), torch.tensor(-1.0), rtol=1e-05, atol=1e-01) def test_comp_generate_0_components(): c = pt.initializers.ZerosCompInitializer(2) _ = c.generate(num_components=0) def test_stratified_mean_comp_generate(): # yapf: disable x = torch.Tensor( [[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]]) y = torch.LongTensor([0, 0, 1, 1]) desired = torch.Tensor( [[5.0, 5.0, 5.0], [1.0, 1.0, 1.0]]) # yapf: enable c = pt.initializers.StratifiedMeanCompInitializer(data=[x, y]) actual = c.generate([1, 1]) assert torch.allclose(actual, desired) def test_stratified_selection_comp_generate(): # yapf: disable x = torch.Tensor( [[0, 0, 0], [1, 1, 1], [0, 0, 0], [1, 1, 1]]) y = torch.LongTensor([0, 1, 0, 1]) desired = torch.Tensor( [[0, 0, 0], [1, 1, 1]]) # yapf: enable c = pt.initializers.StratifiedSelectionCompInitializer(data=[x, y]) actual = c.generate([1, 1]) assert torch.allclose(actual, desired) # Labels initializers def test_literal_labels_init(): l = pt.initializers.LiteralLabelsInitializer([0, 0, 1, 2]) with pytest.warns(UserWarning): labels = l.generate([]) assert torch.allclose(labels, torch.LongTensor([0, 0, 1, 2])) def test_labels_init_from_list(): l = pt.initializers.LabelsInitializer() components = l.generate(distribution=[1, 1, 1]) assert torch.allclose(components, torch.LongTensor([0, 1, 2])) def test_labels_init_from_tuple_legal(): l = pt.initializers.LabelsInitializer() components = l.generate(distribution=(3, 1)) assert torch.allclose(components, torch.LongTensor([0, 1, 2])) def test_labels_init_from_tuple_illegal(): l = pt.initializers.LabelsInitializer() with pytest.raises(AssertionError): _ = l.generate(distribution=(1, 1, 1)) def test_data_aware_labels_init(): data, targets = [0, 1, 2, 3], [0, 0, 1, 1] ds = pt.datasets.NumpyDataset(data, targets) l = pt.initializers.DataAwareLabelsInitializer(ds) labels = l.generate([]) assert torch.allclose(labels, torch.LongTensor(targets)) # Reasonings initializers def test_literal_reasonings_init(): r = pt.initializers.LiteralReasoningsInitializer([0, 0, 1, 2]) with pytest.warns(UserWarning): reasonings = r.generate([]) assert torch.allclose(reasonings, torch.Tensor([0, 0, 1, 2])) def test_random_reasonings_init(): r = pt.initializers.RandomReasoningsInitializer(0.2, 0.8) reasonings = r.generate(distribution=[0, 1]) assert torch.numel(reasonings) == 1 * 2 * 2 assert reasonings.min() >= 0.2 assert reasonings.max() <= 0.8 def test_zeros_reasonings_init(): r = pt.initializers.ZerosReasoningsInitializer() reasonings = r.generate(distribution=[0, 1]) assert torch.allclose(reasonings, torch.zeros(1, 2, 2)) def test_ones_reasonings_init(): r = pt.initializers.ZerosReasoningsInitializer() reasonings = r.generate(distribution=[1, 2, 3]) assert torch.allclose(reasonings, torch.zeros(6, 3, 2)) def test_pure_positive_reasonings_init_one_per_class(): r = pt.initializers.PurePositiveReasoningsInitializer( components_first=False) reasonings = r.generate(distribution=(4, 1)) assert torch.allclose(reasonings[0], torch.eye(4)) def test_pure_positive_reasonings_init_unrepresented_classes(): r = pt.initializers.PurePositiveReasoningsInitializer() reasonings = r.generate(distribution=[9, 0, 0, 0]) assert reasonings.shape[0] == 9 assert reasonings.shape[1] == 4 assert reasonings.shape[2] == 2 def test_random_reasonings_init_channels_not_first(): r = pt.initializers.RandomReasoningsInitializer(components_first=False) reasonings = r.generate(distribution=[0, 0, 0, 1]) assert reasonings.shape[0] == 2 assert reasonings.shape[1] == 4 assert reasonings.shape[2] == 1 # Transform initializers def test_eye_transform_init_square(): t = pt.initializers.EyeTransformInitializer() I = t.generate(3, 3) assert torch.allclose(I, torch.eye(3)) def test_eye_transform_init_narrow(): t = pt.initializers.EyeTransformInitializer() actual = t.generate(3, 2) desired = torch.Tensor([[1, 0], [0, 1], [0, 0]]) assert torch.allclose(actual, desired) def test_eye_transform_init_wide(): t = pt.initializers.EyeTransformInitializer() actual = t.generate(2, 3) desired = torch.Tensor([[1, 0, 0], [0, 1, 0]]) assert torch.allclose(actual, desired) # Transforms def test_linear_transform_default_eye_init(): l = pt.transforms.LinearTransform(2, 4) actual = l.weights desired = torch.Tensor([[1, 0, 0, 0], [0, 1, 0, 0]]) assert torch.allclose(actual, desired) def test_linear_transform_forward(): l = pt.transforms.LinearTransform(4, 2) actual_weights = l.weights desired_weights = torch.Tensor([[1, 0], [0, 1], [0, 0], [0, 0]]) assert torch.allclose(actual_weights, desired_weights) actual_outputs = l(torch.Tensor([[1.1, 2.2, 3.3, 4.4], \ [1.1, 2.2, 3.3, 4.4], \ [5.5, 6.6, 7.7, 8.8]])) desired_outputs = torch.Tensor([[1.1, 2.2], [1.1, 2.2], [5.5, 6.6]]) assert torch.allclose(actual_outputs, desired_outputs) def test_linear_transform_zeros_init(): l = pt.transforms.LinearTransform( in_dim=2, out_dim=4, initializer=pt.initializers.ZerosLinearTransformInitializer(), ) actual = l.weights desired = torch.zeros(2, 4) assert torch.allclose(actual, desired) def test_linear_transform_out_dim_first(): l = pt.transforms.LinearTransform( in_dim=2, out_dim=4, initializer=pt.initializers.OLTI(out_dim_first=True), ) assert l.weights.shape[0] == 4 assert l.weights.shape[1] == 2 # Components def test_components_no_initializer(): with pytest.raises(TypeError): _ = pt.components.Components(3, None) def test_components_no_num_components(): with pytest.raises(TypeError): _ = pt.components.Components(initializer=pt.initializers.OCI(2)) def test_components_none_num_components(): with pytest.raises(TypeError): _ = pt.components.Components(None, initializer=pt.initializers.OCI(2)) def test_components_no_args(): with pytest.raises(TypeError): _ = pt.components.Components() def test_components_zeros_init(): c = pt.components.Components(3, pt.initializers.ZCI(2)) assert torch.allclose(c.components, torch.zeros(3, 2)) def test_labeled_components_dict_init(): c = pt.components.LabeledComponents({0: 3}, pt.initializers.OCI(2)) assert torch.allclose(c.components, torch.ones(3, 2)) assert torch.allclose(c.labels, torch.zeros(3, dtype=torch.long)) def test_labeled_components_list_init(): c = pt.components.LabeledComponents([3], pt.initializers.OCI(2)) assert torch.allclose(c.components, torch.ones(3, 2)) assert torch.allclose(c.labels, torch.zeros(3, dtype=torch.long)) def test_labeled_components_tuple_init(): c = pt.components.LabeledComponents({0: 1, 1: 2}, pt.initializers.OCI(2)) assert torch.allclose(c.components, torch.ones(3, 2)) assert torch.allclose(c.labels, torch.LongTensor([0, 1, 1])) # Labels def test_standalone_labels_dict_init(): l = pt.components.Labels({0: 3}) assert torch.allclose(l.labels, torch.zeros(3, dtype=torch.long)) def test_standalone_labels_list_init(): l = pt.components.Labels([3]) assert torch.allclose(l.labels, torch.zeros(3, dtype=torch.long)) def test_standalone_labels_tuple_init(): l = pt.components.Labels({0: 1, 1: 2}) assert torch.allclose(l.labels, torch.LongTensor([0, 1, 1])) # Losses def test_glvq_loss_int_labels(): d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1) labels = torch.tensor([0, 1]) targets = torch.ones(100) batch_loss = pt.losses.glvq_loss(distances=d, target_labels=targets, prototype_labels=labels) loss_value = torch.sum(batch_loss, dim=0) assert loss_value == -100 def test_glvq_loss_one_hot_labels(): d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1) labels = torch.tensor([[0, 1], [1, 0]]) wl = torch.tensor([1, 0]) targets = torch.stack([wl for _ in range(100)], dim=0) batch_loss = pt.losses.glvq_loss(distances=d, target_labels=targets, prototype_labels=labels) loss_value = torch.sum(batch_loss, dim=0) assert loss_value == -100 def test_glvq_loss_one_hot_unequal(): dlist = [torch.ones(100), torch.zeros(100), torch.zeros(100)] d = torch.stack(dlist, dim=1) labels = torch.tensor([[0, 1], [1, 0], [1, 0]]) wl = torch.tensor([1, 0]) targets = torch.stack([wl for _ in range(100)], dim=0) batch_loss = pt.losses.glvq_loss(distances=d, target_labels=targets, prototype_labels=labels) loss_value = torch.sum(batch_loss, dim=0) assert loss_value == -100 # Activations class TestActivations(unittest.TestCase): def setUp(self): self.flist = ["identity", "sigmoid_beta", "swish_beta"] self.x = torch.randn(1024, 1) def test_registry(self): self.assertIsNotNone(pt.nn.ACTIVATIONS) def test_funcname_deserialization(self): for funcname in self.flist: f = pt.nn.get_activation(funcname) iscallable = callable(f) self.assertTrue(iscallable) def test_callable_deserialization(self): def dummy(x, **kwargs): return x for f in [dummy, lambda x: x]: f = pt.nn.get_activation(f) iscallable = callable(f) self.assertTrue(iscallable) self.assertEqual(1, f(1)) def test_unknown_deserialization(self): for funcname in ["blubb", "foobar"]: with self.assertRaises(NameError): _ = pt.nn.get_activation(funcname) def test_identity(self): actual = pt.nn.identity(self.x) desired = self.x mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_sigmoid_beta1(self): actual = pt.nn.sigmoid_beta(self.x, beta=1.0) desired = torch.sigmoid(self.x) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_swish_beta1(self): actual = pt.nn.swish_beta(self.x, beta=1.0) desired = self.x * torch.sigmoid(self.x) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def tearDown(self): del self.x # Competitions class TestCompetitions(unittest.TestCase): def setUp(self): pass def test_wtac(self): d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]]) labels = torch.tensor([0, 1, 2, 3]) competition_layer = pt.competitions.WTAC() actual = competition_layer(d, labels) desired = torch.tensor([2, 0]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_wtac_unequal_dist(self): d = torch.tensor([[2.0, 3.0, 4.0], [2.0, 3.0, 1.0]]) labels = torch.tensor([0, 1, 1]) competition_layer = pt.competitions.WTAC() actual = competition_layer(d, labels) desired = torch.tensor([0, 1]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_wtac_one_hot(self): d = torch.tensor([[1.99, 3.01], [3.0, 2.01]]) labels = torch.tensor([[0, 1], [1, 0]]) competition_layer = pt.competitions.WTAC() actual = competition_layer(d, labels) desired = torch.tensor([[0, 1], [1, 0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_knnc_k1(self): d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]]) labels = torch.tensor([0, 1, 2, 3]) competition_layer = pt.competitions.KNNC(k=1) actual = competition_layer(d, labels) desired = torch.tensor([2, 0]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def tearDown(self): pass # Pooling class TestPooling(unittest.TestCase): def setUp(self): pass def test_stratified_min(self): d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]]) labels = torch.tensor([0, 0, 1, 2]) pooling_layer = pt.pooling.StratifiedMinPooling() actual = pooling_layer(d, labels) desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_min_one_hot(self): d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]]) labels = torch.tensor([0, 0, 1, 2]) labels = torch.eye(3)[labels] pooling_layer = pt.pooling.StratifiedMinPooling() actual = pooling_layer(d, labels) desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_min_trivial(self): d = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0, 1]]) labels = torch.tensor([0, 1, 2]) pooling_layer = pt.pooling.StratifiedMinPooling() actual = pooling_layer(d, labels) desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_max(self): d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]]) labels = torch.tensor([0, 0, 3, 2, 0]) pooling_layer = pt.pooling.StratifiedMaxPooling() actual = pooling_layer(d, labels) desired = torch.tensor([[9.0, 3.0, 2.0], [9.0, 1.0, 0.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_max_one_hot(self): d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]]) labels = torch.tensor([0, 0, 2, 1, 0]) labels = torch.nn.functional.one_hot(labels, num_classes=3) pooling_layer = pt.pooling.StratifiedMaxPooling() actual = pooling_layer(d, labels) desired = torch.tensor([[9.0, 3.0, 2.0], [9.0, 1.0, 0.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_sum(self): d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]]) labels = torch.LongTensor([0, 0, 1, 2]) pooling_layer = pt.pooling.StratifiedSumPooling() actual = pooling_layer(d, labels) desired = torch.tensor([[1.0, 2.0, 3.0], [17.0, 0.0, 1.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_sum_one_hot(self): d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]]) labels = torch.tensor([0, 0, 1, 2]) labels = torch.eye(3)[labels] pooling_layer = pt.pooling.StratifiedSumPooling() actual = pooling_layer(d, labels) desired = torch.tensor([[1.0, 2.0, 3.0], [17.0, 0.0, 1.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_prod(self): d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]]) labels = torch.tensor([0, 0, 3, 2, 0]) pooling_layer = pt.pooling.StratifiedProdPooling() actual = pooling_layer(d, labels) desired = torch.tensor([[0.0, 3.0, 2.0], [504.0, 1.0, 0.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def tearDown(self): pass # Distances class TestDistances(unittest.TestCase): def setUp(self): self.nx, self.mx = 32, 2048 self.ny, self.my = 8, 2048 self.x = torch.randn(self.nx, self.mx) self.y = torch.randn(self.ny, self.my) def test_manhattan(self): actual = pt.distances.lpnorm_distance(self.x, self.y, p=1) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=1, keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=2) self.assertIsNone(mismatch) def test_euclidean(self): actual = pt.distances.euclidean_distance(self.x, self.y) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=2, keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=3) self.assertIsNone(mismatch) def test_squared_euclidean(self): actual = pt.distances.squared_euclidean_distance(self.x, self.y) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = (torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=2, keepdim=False, )**2) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=2) self.assertIsNone(mismatch) def test_lpnorm_p0(self): actual = pt.distances.lpnorm_distance(self.x, self.y, p=0) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=0, keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=4) self.assertIsNone(mismatch) def test_lpnorm_p2(self): actual = pt.distances.lpnorm_distance(self.x, self.y, p=2) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=2, keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=4) self.assertIsNone(mismatch) def test_lpnorm_p3(self): actual = pt.distances.lpnorm_distance(self.x, self.y, p=3) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=3, keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=4) self.assertIsNone(mismatch) def test_lpnorm_pinf(self): actual = pt.distances.lpnorm_distance(self.x, self.y, p=float("inf")) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=float("inf"), keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=4) self.assertIsNone(mismatch) def test_omega_identity(self): omega = torch.eye(self.mx, self.my) actual = pt.distances.omega_distance(self.x, self.y, omega=omega) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = (torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=2, keepdim=False, )**2) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=2) self.assertIsNone(mismatch) def test_lomega_identity(self): omega = torch.eye(self.mx, self.my) omegas = torch.stack([omega for _ in range(self.ny)], dim=0) actual = pt.distances.lomega_distance(self.x, self.y, omegas=omegas) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = (torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=2, keepdim=False, )**2) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=2) self.assertIsNone(mismatch) def tearDown(self): del self.x, self.y