"""ProtoTorch GLVQ example using 2D Iris data.""" import numpy as np import torch from matplotlib import pyplot as plt from prototorch.functions.competitions import wtac from prototorch.functions.distances import euclidean_distance from prototorch.modules.losses import GLVQLoss from prototorch.modules.prototypes import Prototypes1D from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from torchinfo import summary # Prepare and preprocess the data scaler = StandardScaler() x_train, y_train = load_iris(return_X_y=True) x_train = x_train[:, [0, 2]] scaler.fit(x_train) x_train = scaler.transform(x_train) # Define the GLVQ model class Model(torch.nn.Module): def __init__(self): """GLVQ model for training on 2D Iris data.""" super().__init__() self.proto_layer = Prototypes1D( input_dim=2, prototypes_per_class=3, num_classes=3, prototype_initializer="stratified_random", data=[x_train, y_train], ) def forward(self, x): protos = self.proto_layer.prototypes plabels = self.proto_layer.prototype_labels dis = euclidean_distance(x, protos) return dis, plabels # Build the GLVQ model model = Model() # Print summary using torchinfo (might be buggy/incorrect) print(summary(model)) # Optimize using SGD optimizer from `torch.optim` optimizer = torch.optim.SGD(model.parameters(), lr=0.01) criterion = GLVQLoss(squashing="sigmoid_beta", beta=10) x_in = torch.Tensor(x_train) y_in = torch.Tensor(y_train) # Training loop title = "Prototype Visualization" fig = plt.figure(title) for epoch in range(70): # Compute loss dis, plabels = model(x_in) loss = criterion([dis, plabels], y_in) with torch.no_grad(): pred = wtac(dis, plabels) correct = pred.eq(y_in.view_as(pred)).sum().item() acc = 100.0 * correct / len(x_train) print( f"Epoch: {epoch + 1:03d} Loss: {loss.item():05.02f} Acc: {acc:05.02f}%" ) # Take a gradient descent step optimizer.zero_grad() loss.backward() optimizer.step() # Get the prototypes form the model protos = model.proto_layer.prototypes.data.numpy() if np.isnan(np.sum(protos)): print("Stopping training because of `nan` in prototypes.") break # Visualize the data and the prototypes ax = fig.gca() ax.cla() ax.set_title(title) ax.set_xlabel("Data dimension 1") ax.set_ylabel("Data dimension 2") cmap = "viridis" ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") ax.scatter( protos[:, 0], protos[:, 1], c=plabels, cmap=cmap, edgecolor="k", marker="D", s=50, ) # Paint decision regions x = np.vstack((x_train, protos)) x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), np.arange(y_min, y_max, 1 / 50)) mesh_input = np.c_[xx.ravel(), yy.ravel()] torch_input = torch.Tensor(mesh_input) d = model(torch_input)[0] w_indices = torch.argmin(d, dim=1) y_pred = torch.index_select(plabels, 0, w_indices) y_pred = y_pred.reshape(xx.shape) # Plot voronoi regions ax.contourf(xx, yy, y_pred, cmap=cmap, alpha=0.35) ax.set_xlim(left=x_min + 0, right=x_max - 0) ax.set_ylim(bottom=y_min + 0, top=y_max - 0) plt.pause(0.1)