"""ProtoTorch functions test suite.""" import unittest import numpy as np import torch from prototorch.functions import ( activations, competitions, distances, initializers, losses, ) class TestActivations(unittest.TestCase): def setUp(self): self.flist = ["identity", "sigmoid_beta", "swish_beta"] self.x = torch.randn(1024, 1) def test_registry(self): self.assertIsNotNone(activations.ACTIVATIONS) def test_funcname_deserialization(self): for funcname in self.flist: f = activations.get_activation(funcname) iscallable = callable(f) self.assertTrue(iscallable) # def test_torch_script(self): # for funcname in self.flist: # f = activations.get_activation(funcname) # self.assertIsInstance(f, torch.jit.ScriptFunction) def test_callable_deserialization(self): def dummy(x, **kwargs): return x for f in [dummy, lambda x: x]: f = activations.get_activation(f) iscallable = callable(f) self.assertTrue(iscallable) self.assertEqual(1, f(1)) def test_unknown_deserialization(self): for funcname in ["blubb", "foobar"]: with self.assertRaises(NameError): _ = activations.get_activation(funcname) def test_identity(self): actual = activations.identity(self.x) desired = self.x mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_sigmoid_beta1(self): actual = activations.sigmoid_beta(self.x, beta=1.0) desired = torch.sigmoid(self.x) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_swish_beta1(self): actual = activations.swish_beta(self.x, beta=1.0) desired = self.x * torch.sigmoid(self.x) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def tearDown(self): del self.x class TestCompetitions(unittest.TestCase): def setUp(self): pass def test_wtac(self): d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]]) labels = torch.tensor([0, 1, 2, 3]) actual = competitions.wtac(d, labels) desired = torch.tensor([2, 0]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_wtac_unequal_dist(self): d = torch.tensor([[2.0, 3.0, 4.0], [2.0, 3.0, 1.0]]) labels = torch.tensor([0, 1, 1]) actual = competitions.wtac(d, labels) desired = torch.tensor([0, 1]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_wtac_one_hot(self): d = torch.tensor([[1.99, 3.01], [3.0, 2.01]]) labels = torch.tensor([[0, 1], [1, 0]]) actual = competitions.wtac(d, labels) desired = torch.tensor([[0, 1], [1, 0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_min(self): d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]]) labels = torch.tensor([0, 0, 1, 2]) actual = competitions.stratified_min(d, labels) desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_min_one_hot(self): d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]]) labels = torch.tensor([0, 0, 1, 2]) labels = torch.eye(3)[labels] actual = competitions.stratified_min(d, labels) desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_min_simple(self): d = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0, 1]]) labels = torch.tensor([0, 1, 2]) actual = competitions.stratified_min(d, labels) desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_knnc_k1(self): d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]]) labels = torch.tensor([0, 1, 2, 3]) actual = competitions.knnc(d, labels, k=torch.tensor([1])) desired = torch.tensor([2, 0]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def tearDown(self): pass class TestDistances(unittest.TestCase): def setUp(self): self.nx, self.mx = 32, 2048 self.ny, self.my = 8, 2048 self.x = torch.randn(self.nx, self.mx) self.y = torch.randn(self.ny, self.my) def test_manhattan(self): actual = distances.lpnorm_distance(self.x, self.y, p=1) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=1, keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=2) self.assertIsNone(mismatch) def test_euclidean(self): actual = distances.euclidean_distance(self.x, self.y) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=2, keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=3) self.assertIsNone(mismatch) def test_squared_euclidean(self): actual = distances.squared_euclidean_distance(self.x, self.y) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = (torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=2, keepdim=False, )**2) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=2) self.assertIsNone(mismatch) def test_lpnorm_p0(self): actual = distances.lpnorm_distance(self.x, self.y, p=0) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=0, keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=4) self.assertIsNone(mismatch) def test_lpnorm_p2(self): actual = distances.lpnorm_distance(self.x, self.y, p=2) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=2, keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=4) self.assertIsNone(mismatch) def test_lpnorm_p3(self): actual = distances.lpnorm_distance(self.x, self.y, p=3) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=3, keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=4) self.assertIsNone(mismatch) def test_lpnorm_pinf(self): actual = distances.lpnorm_distance(self.x, self.y, p=float("inf")) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=float("inf"), keepdim=False, ) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=4) self.assertIsNone(mismatch) def test_omega_identity(self): omega = torch.eye(self.mx, self.my) actual = distances.omega_distance(self.x, self.y, omega=omega) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = (torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=2, keepdim=False, )**2) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=2) self.assertIsNone(mismatch) def test_lomega_identity(self): omega = torch.eye(self.mx, self.my) omegas = torch.stack([omega for _ in range(self.ny)], dim=0) actual = distances.lomega_distance(self.x, self.y, omegas=omegas) desired = torch.empty(self.nx, self.ny) for i in range(self.nx): for j in range(self.ny): desired[i][j] = (torch.nn.functional.pairwise_distance( self.x[i].reshape(1, -1), self.y[j].reshape(1, -1), p=2, keepdim=False, )**2) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=2) self.assertIsNone(mismatch) def tearDown(self): del self.x, self.y class TestInitializers(unittest.TestCase): def setUp(self): self.flist = [ "zeros", "ones", "rand", "randn", "stratified_mean", "stratified_random", ] self.x = torch.tensor( [[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]], dtype=torch.float32) self.y = torch.tensor([0, 0, 1, 1]) self.gen = torch.manual_seed(42) def test_registry(self): self.assertIsNotNone(initializers.INITIALIZERS) def test_funcname_deserialization(self): for funcname in self.flist: f = initializers.get_initializer(funcname) iscallable = callable(f) self.assertTrue(iscallable) def test_callable_deserialization(self): def dummy(x): return x for f in [dummy, lambda x: x]: f = initializers.get_initializer(f) iscallable = callable(f) self.assertTrue(iscallable) self.assertEqual(1, f(1)) def test_unknown_deserialization(self): for funcname in ["blubb", "foobar"]: with self.assertRaises(NameError): _ = initializers.get_initializer(funcname) def test_zeros(self): pdist = torch.tensor([1, 1]) actual, _ = initializers.zeros(self.x, self.y, pdist) desired = torch.zeros(2, 3) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_ones(self): pdist = torch.tensor([1, 1]) actual, _ = initializers.ones(self.x, self.y, pdist) desired = torch.ones(2, 3) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_rand(self): pdist = torch.tensor([1, 1]) actual, _ = initializers.rand(self.x, self.y, pdist) desired = torch.rand(2, 3, generator=torch.manual_seed(42)) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_randn(self): pdist = torch.tensor([1, 1]) actual, _ = initializers.randn(self.x, self.y, pdist) desired = torch.randn(2, 3, generator=torch.manual_seed(42)) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_mean_equal1(self): pdist = torch.tensor([1, 1]) actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False) desired = torch.tensor([[5.0, 5.0, 5.0], [1.0, 1.0, 1.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_random_equal1(self): pdist = torch.tensor([1, 1]) actual, _ = initializers.stratified_random(self.x, self.y, pdist, False) desired = torch.tensor([[0.0, -1.0, -2.0], [0.0, 0.0, 0.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_mean_equal2(self): pdist = torch.tensor([2, 2]) actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False) desired = torch.tensor([[5.0, 5.0, 5.0], [5.0, 5.0, 5.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_random_equal2(self): pdist = torch.tensor([2, 2]) actual, _ = initializers.stratified_random(self.x, self.y, pdist, False) desired = torch.tensor([[0.0, -1.0, -2.0], [0.0, -1.0, -2.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_mean_unequal(self): pdist = torch.tensor([1, 3]) actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False) desired = torch.tensor([[5.0, 5.0, 5.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_random_unequal(self): pdist = torch.tensor([1, 3]) actual, _ = initializers.stratified_random(self.x, self.y, pdist, False) desired = torch.tensor([[0.0, -1.0, -2.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_stratified_mean_unequal_one_hot(self): pdist = torch.tensor([1, 3]) y = torch.eye(2)[self.y] desired1 = torch.tensor([[5.0, 5.0, 5.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]) actual1, actual2 = initializers.stratified_mean(self.x, y, pdist) desired2 = torch.tensor([[1, 0], [0, 1], [0, 1], [0, 1]]) mismatch = np.testing.assert_array_almost_equal(actual1, desired1, decimal=5) mismatch = np.testing.assert_array_almost_equal(actual2, desired2, decimal=5) self.assertIsNone(mismatch) def test_stratified_random_unequal_one_hot(self): pdist = torch.tensor([1, 3]) y = torch.eye(2)[self.y] actual1, actual2 = initializers.stratified_random(self.x, y, pdist) desired1 = torch.tensor([[0.0, -1.0, -2.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) desired2 = torch.tensor([[1, 0], [0, 1], [0, 1], [0, 1]]) mismatch = np.testing.assert_array_almost_equal(actual1, desired1, decimal=5) mismatch = np.testing.assert_array_almost_equal(actual2, desired2, decimal=5) self.assertIsNone(mismatch) def tearDown(self): del self.x, self.y, self.gen _ = torch.seed() class TestLosses(unittest.TestCase): def setUp(self): pass def test_glvq_loss_int_labels(self): d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1) labels = torch.tensor([0, 1]) targets = torch.ones(100) batch_loss = losses.glvq_loss(distances=d, target_labels=targets, prototype_labels=labels) loss_value = torch.sum(batch_loss, dim=0) self.assertEqual(loss_value, -100) def test_glvq_loss_one_hot_labels(self): d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1) labels = torch.tensor([[0, 1], [1, 0]]) wl = torch.tensor([1, 0]) targets = torch.stack([wl for _ in range(100)], dim=0) batch_loss = losses.glvq_loss(distances=d, target_labels=targets, prototype_labels=labels) loss_value = torch.sum(batch_loss, dim=0) self.assertEqual(loss_value, -100) def test_glvq_loss_one_hot_unequal(self): dlist = [torch.ones(100), torch.zeros(100), torch.zeros(100)] d = torch.stack(dlist, dim=1) labels = torch.tensor([[0, 1], [1, 0], [1, 0]]) wl = torch.tensor([1, 0]) targets = torch.stack([wl for _ in range(100)], dim=0) batch_loss = losses.glvq_loss(distances=d, target_labels=targets, prototype_labels=labels) loss_value = torch.sum(batch_loss, dim=0) self.assertEqual(loss_value, -100) def tearDown(self): pass