"""ProtoTorch modules test suite.""" import unittest import numpy as np import torch from prototorch.modules import losses, prototypes class TestPrototypes(unittest.TestCase): def setUp(self): self.x = torch.tensor( [[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]], dtype=torch.float32) self.y = torch.tensor([0, 0, 1, 1]) self.gen = torch.manual_seed(42) def test_prototypes1d_init_without_input_dim(self): with self.assertRaises(NameError): _ = prototypes.Prototypes1D(num_classes=2) def test_prototypes1d_init_without_num_classes(self): with self.assertRaises(NameError): _ = prototypes.Prototypes1D(input_dim=1) def test_prototypes1d_init_with_num_classes_1(self): with self.assertWarns(UserWarning): _ = prototypes.Prototypes1D(num_classes=1, input_dim=1) def test_prototypes1d_init_without_pdist(self): p1 = prototypes.Prototypes1D( input_dim=6, num_classes=2, prototypes_per_class=4, prototype_initializer="ones", ) protos = p1.prototypes actual = protos.detach().numpy() desired = torch.ones(8, 6) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_prototypes1d_init_without_data(self): pdist = [2, 2] p1 = prototypes.Prototypes1D(input_dim=3, prototype_distribution=pdist, prototype_initializer="zeros") protos = p1.prototypes actual = protos.detach().numpy() desired = torch.zeros(4, 3) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_prototypes1d_proto_init_without_data(self): with self.assertWarns(UserWarning): _ = prototypes.Prototypes1D( input_dim=3, num_classes=2, prototypes_per_class=1, prototype_initializer="stratified_mean", data=None, ) def test_prototypes1d_init_torch_pdist(self): pdist = torch.tensor([2, 2]) p1 = prototypes.Prototypes1D(input_dim=3, prototype_distribution=pdist, prototype_initializer="zeros") protos = p1.prototypes actual = protos.detach().numpy() desired = torch.zeros(4, 3) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_prototypes1d_init_without_inputdim_with_data(self): _ = prototypes.Prototypes1D( num_classes=2, prototypes_per_class=1, prototype_initializer="stratified_mean", data=[[[1.0], [0.0]], [1, 0]], ) def test_prototypes1d_init_with_int_data(self): _ = prototypes.Prototypes1D( num_classes=2, prototypes_per_class=1, prototype_initializer="stratified_mean", data=[[[1], [0]], [1, 0]], ) def test_prototypes1d_init_one_hot_without_data(self): _ = prototypes.Prototypes1D( input_dim=1, num_classes=2, prototypes_per_class=1, prototype_initializer="stratified_mean", data=None, one_hot_labels=True, ) def test_prototypes1d_init_one_hot_labels_false(self): """Test if ValueError is raised when `one_hot_labels` is set to `False` but the provided `data` has one-hot encoded labels. """ with self.assertRaises(ValueError): _ = prototypes.Prototypes1D( input_dim=1, num_classes=2, prototypes_per_class=1, prototype_initializer="stratified_mean", data=([[0.0], [1.0]], [[0, 1], [1, 0]]), one_hot_labels=False, ) def test_prototypes1d_init_1d_y_data_one_hot_labels_true(self): """Test if ValueError is raised when `one_hot_labels` is set to `True` but the provided `data` does not contain one-hot encoded labels. """ with self.assertRaises(ValueError): _ = prototypes.Prototypes1D( input_dim=1, num_classes=2, prototypes_per_class=1, prototype_initializer="stratified_mean", data=([[0.0], [1.0]], [0, 1]), one_hot_labels=True, ) def test_prototypes1d_init_one_hot_labels_true(self): """Test if ValueError is raised when `one_hot_labels` is set to `True` but the provided `data` contains 2D targets but does not contain one-hot encoded labels. """ with self.assertRaises(ValueError): _ = prototypes.Prototypes1D( input_dim=1, num_classes=2, prototypes_per_class=1, prototype_initializer="stratified_mean", data=([[0.0], [1.0]], [[0], [1]]), one_hot_labels=True, ) def test_prototypes1d_init_with_int_dtype(self): with self.assertRaises(RuntimeError): _ = prototypes.Prototypes1D( num_classes=2, prototypes_per_class=1, prototype_initializer="stratified_mean", data=[[[1], [0]], [1, 0]], dtype=torch.int32, ) def test_prototypes1d_inputndim_with_data(self): with self.assertRaises(ValueError): _ = prototypes.Prototypes1D(input_dim=1, num_classes=1, prototypes_per_class=1, data=[[1.0], [1]]) def test_prototypes1d_inputdim_with_data(self): with self.assertRaises(ValueError): _ = prototypes.Prototypes1D( input_dim=2, num_classes=2, prototypes_per_class=1, prototype_initializer="stratified_mean", data=[[[1.0], [0.0]], [1, 0]], ) def test_prototypes1d_num_classes_with_data(self): """Test ValueError raise if provided `num_classes` is not the same as the one computed from the provided `data`. """ with self.assertRaises(ValueError): _ = prototypes.Prototypes1D( input_dim=1, num_classes=1, prototypes_per_class=1, prototype_initializer="stratified_mean", data=[[[1.0], [2.0]], [1, 2]], ) def test_prototypes1d_init_with_ppc(self): p1 = prototypes.Prototypes1D(data=[self.x, self.y], prototypes_per_class=2, prototype_initializer="zeros") protos = p1.prototypes actual = protos.detach().numpy() desired = torch.zeros(4, 3) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_prototypes1d_init_with_pdist(self): p1 = prototypes.Prototypes1D( data=[self.x, self.y], prototype_distribution=[6, 9], prototype_initializer="zeros", ) protos = p1.prototypes actual = protos.detach().numpy() desired = torch.zeros(15, 3) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_prototypes1d_func_initializer(self): def my_initializer(*args, **kwargs): return torch.full((2, 99), 99.0), torch.tensor([0, 1]) p1 = prototypes.Prototypes1D( input_dim=99, num_classes=2, prototypes_per_class=1, prototype_initializer=my_initializer, ) protos = p1.prototypes actual = protos.detach().numpy() desired = 99 * torch.ones(2, 99) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_prototypes1d_forward(self): p1 = prototypes.Prototypes1D(data=[self.x, self.y]) protos, _ = p1() actual = protos.detach().numpy() desired = torch.ones(2, 3) mismatch = np.testing.assert_array_almost_equal(actual, desired, decimal=5) self.assertIsNone(mismatch) def test_prototypes1d_dist_validate(self): p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0]) with self.assertWarns(UserWarning): _ = p1._validate_prototype_distribution() def test_prototypes1d_validate_extra_repr_not_empty(self): p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0]) rep = p1.extra_repr() self.assertNotEqual(rep, "") def tearDown(self): del self.x, self.y, self.gen _ = torch.seed() class TestLosses(unittest.TestCase): def setUp(self): pass def test_glvqloss_init(self): _ = losses.GLVQLoss(0, "swish_beta", beta=20) def test_glvqloss_forward_1ppc(self): criterion = losses.GLVQLoss(margin=0, squashing="sigmoid_beta", beta=100) d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1) labels = torch.tensor([0, 1]) targets = torch.ones(100) outputs = [d, labels] loss = criterion(outputs, targets) loss_value = loss.item() self.assertAlmostEqual(loss_value, 0.0) def test_glvqloss_forward_2ppc(self): criterion = losses.GLVQLoss(margin=0, squashing="sigmoid_beta", beta=100) d = torch.stack([ torch.ones(100), torch.ones(100), torch.zeros(100), torch.ones(100) ], dim=1) labels = torch.tensor([0, 0, 1, 1]) targets = torch.ones(100) outputs = [d, labels] loss = criterion(outputs, targets) loss_value = loss.item() self.assertAlmostEqual(loss_value, 0.0) def tearDown(self): pass