Compare commits

...

11 Commits

Author SHA1 Message Date
Alexander Engelsberger
391473adf3 build: bump version 0.7.5 → 0.7.6 2023-10-04 14:47:27 +02:00
Alexander Engelsberger
0d8db31ff2
ci: update python versions 2023-06-20 16:34:41 +02:00
Alexander Engelsberger
89b96f0a98
chore: switch to pytorch 2.0+ 2023-06-20 16:27:54 +02:00
Alexander Engelsberger
ee4cf583e3
chore: fix minor errors and upgrade codebase 2023-06-20 16:06:53 +02:00
Alexander Engelsberger
6ed1b9a832
feat: add gmlvq example
it was necessary to update the pre-commit definition for a successfull
commit.
2023-06-20 15:12:32 +02:00
Alexander Engelsberger
4a7d4a3d99
chore(ci): update github actions 2022-12-05 17:14:54 +01:00
Alexander Engelsberger
0626af207f
build: bump version 0.7.4 → 0.7.5 2022-12-05 17:03:04 +01:00
rmschubert
7b23983887 fix: update scikit-learn dependency 2022-12-05 16:48:22 +01:00
Alexander Engelsberger
0649d5bb45
build: bump version 0.7.3 → 0.7.4 2022-05-17 11:57:32 +02:00
Alexander Engelsberger
339316aa7e
fix: use epsilon in cbc competition 2022-05-17 11:56:43 +02:00
Alexander Engelsberger
2a85c94b55
chore: minor changes and version updates 2022-05-17 11:56:18 +02:00
16 changed files with 230 additions and 136 deletions

View File

@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.7.3 current_version = 0.7.6
commit = True commit = True
tag = True tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+) parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)

View File

@ -6,70 +6,70 @@ name: tests
on: on:
push: push:
pull_request: pull_request:
branches: [ master ] branches: [master]
jobs: jobs:
style: style:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v3
- name: Set up Python 3.10 - name: Set up Python 3.11
uses: actions/setup-python@v2 uses: actions/setup-python@v4
with: with:
python-version: "3.10" python-version: "3.11"
- name: Install dependencies - name: Install dependencies
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install .[all] pip install .[all]
- uses: pre-commit/action@v2.0.3 - uses: pre-commit/action@v3.0.0
compatibility: compatibility:
needs: style needs: style
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.7", "3.8", "3.9", "3.10"] python-version: ["3.8", "3.9", "3.10", "3.11"]
os: [ubuntu-latest, windows-latest] os: [ubuntu-latest, windows-latest]
exclude: exclude:
- os: windows-latest - os: windows-latest
python-version: "3.7" python-version: "3.8"
- os: windows-latest - os: windows-latest
python-version: "3.8" python-version: "3.9"
- os: windows-latest - os: windows-latest
python-version: "3.9" python-version: "3.10"
runs-on: ${{ matrix.os }} runs-on: ${{ matrix.os }}
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} - name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2 uses: actions/setup-python@v4
with: with:
python-version: ${{ matrix.python-version }} python-version: ${{ matrix.python-version }}
- name: Install dependencies - name: Install dependencies
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install .[all] pip install .[all]
- name: Test with pytest - name: Test with pytest
run: | run: |
pytest pytest
publish_pypi: publish_pypi:
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags') if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
needs: compatibility needs: compatibility
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v3
- name: Set up Python 3.10 - name: Set up Python 3.10
uses: actions/setup-python@v2 uses: actions/setup-python@v4
with: with:
python-version: "3.10" python-version: "3.11"
- name: Install dependencies - name: Install dependencies
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install .[all] pip install .[all]
pip install wheel pip install wheel
- name: Build package - name: Build package
run: python setup.py sdist bdist_wheel run: python setup.py sdist bdist_wheel
- name: Publish a Python distribution to PyPI - name: Publish a Python distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1 uses: pypa/gh-action-pypi-publish@release/v1
with: with:
user: __token__ user: __token__
password: ${{ secrets.PYPI_API_TOKEN }} password: ${{ secrets.PYPI_API_TOKEN }}

View File

@ -3,7 +3,7 @@
repos: repos:
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.1.0 rev: v4.4.0
hooks: hooks:
- id: trailing-whitespace - id: trailing-whitespace
- id: end-of-file-fixer - id: end-of-file-fixer
@ -13,17 +13,17 @@ repos:
- id: check-case-conflict - id: check-case-conflict
- repo: https://github.com/myint/autoflake - repo: https://github.com/myint/autoflake
rev: v1.4 rev: v2.1.1
hooks: hooks:
- id: autoflake - id: autoflake
- repo: http://github.com/PyCQA/isort - repo: http://github.com/PyCQA/isort
rev: 5.10.1 rev: 5.12.0
hooks: hooks:
- id: isort - id: isort
- repo: https://github.com/pre-commit/mirrors-mypy - repo: https://github.com/pre-commit/mirrors-mypy
rev: v0.931 rev: v1.3.0
hooks: hooks:
- id: mypy - id: mypy
files: prototorch files: prototorch
@ -35,14 +35,14 @@ repos:
- id: yapf - id: yapf
- repo: https://github.com/pre-commit/pygrep-hooks - repo: https://github.com/pre-commit/pygrep-hooks
rev: v1.9.0 rev: v1.10.0
hooks: hooks:
- id: python-use-type-annotations - id: python-use-type-annotations
- id: python-no-log-warn - id: python-no-log-warn
- id: python-check-blanket-noqa - id: python-check-blanket-noqa
- repo: https://github.com/asottile/pyupgrade - repo: https://github.com/asottile/pyupgrade
rev: v2.31.0 rev: v3.7.0
hooks: hooks:
- id: pyupgrade - id: pyupgrade

View File

@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags # The full version, including alpha/beta/rc tags
# #
release = "0.7.3" release = "0.7.6"
# -- General configuration --------------------------------------------------- # -- General configuration ---------------------------------------------------

View File

@ -1,5 +1,7 @@
"""ProtoTorch CBC example using 2D Iris data.""" """ProtoTorch CBC example using 2D Iris data."""
import logging
import torch import torch
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
@ -34,7 +36,7 @@ class VisCBC2D():
self.resolution = 100 self.resolution = 100
self.cmap = "viridis" self.cmap = "viridis"
def on_epoch_end(self): def on_train_epoch_end(self):
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
_components = self.model.components_layer._components.detach() _components = self.model.components_layer._components.detach()
ax = self.fig.gca() ax = self.fig.gca()
@ -94,5 +96,5 @@ if __name__ == "__main__":
correct += (y_pred.argmax(1) == y).float().sum(0) correct += (y_pred.argmax(1) == y).float().sum(0)
acc = 100 * correct / len(train_ds) acc = 100 * correct / len(train_ds)
print(f"Epoch: {epoch} Accuracy: {acc:05.02f}%") logging.info(f"Epoch: {epoch} Accuracy: {acc:05.02f}%")
vis.on_epoch_end() vis.on_train_epoch_end()

76
examples/gmlvq.py Normal file
View File

@ -0,0 +1,76 @@
"""ProtoTorch GMLVQ example using Iris data."""
import torch
import prototorch as pt
class GMLVQ(torch.nn.Module):
"""
Implementation of Generalized Matrix Learning Vector Quantization.
"""
def __init__(self, data, **kwargs):
super().__init__(**kwargs)
self.components_layer = pt.components.LabeledComponents(
distribution=[1, 1, 1],
components_initializer=pt.initializers.SMCI(data, noise=0.1),
)
self.backbone = pt.transforms.Omega(
len(data[0][0]),
len(data[0][0]),
pt.initializers.RandomLinearTransformInitializer(),
)
def forward(self, data):
"""
Forward function that returns a tuple of dissimilarities and label information.
Feed into GLVQLoss to get a complete GMLVQ model.
"""
components, label = self.components_layer()
latent_x = self.backbone(data)
latent_components = self.backbone(components)
distance = pt.distances.squared_euclidean_distance(
latent_x, latent_components)
return distance, label
def predict(self, data):
"""
The GMLVQ has a modified prediction step, where a competition layer is applied.
"""
components, label = self.components_layer()
distance = pt.distances.squared_euclidean_distance(data, components)
winning_label = pt.competitions.wtac(distance, label)
return winning_label
if __name__ == "__main__":
train_ds = pt.datasets.Iris()
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
model = GMLVQ(train_ds)
optimizer = torch.optim.Adam(model.parameters(), lr=0.05)
criterion = pt.losses.GLVQLoss()
for epoch in range(200):
correct = 0.0
for x, y in train_loader:
d, labels = model(x)
loss = criterion(d, y, labels).mean(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
y_pred = model.predict(x)
correct += (y_pred == y).float().sum(0)
acc = 100 * correct / len(train_ds)
print(f"Epoch: {epoch} Accuracy: {acc:05.02f}%")

View File

@ -17,7 +17,7 @@ from .core import similarities # noqa: F401
from .core import transforms # noqa: F401 from .core import transforms # noqa: F401
# Core Setup # Core Setup
__version__ = "0.7.3" __version__ = "0.7.6"
__all_core__ = [ __all_core__ = [
"competitions", "competitions",

View File

@ -38,7 +38,7 @@ def cbcc(detections: torch.Tensor, reasonings: torch.Tensor):
pk = A pk = A
nk = (1 - A) * B nk = (1 - A) * B
numerator = (detections @ (pk - nk).T) + nk.sum(1) numerator = (detections @ (pk - nk).T) + nk.sum(1)
probs = numerator / (pk + nk).sum(1) probs = numerator / ((pk + nk).sum(1) + 1e-8)
return probs return probs

View File

@ -11,7 +11,7 @@ def squared_euclidean_distance(x, y):
**Alias:** **Alias:**
``prototorch.functions.distances.sed`` ``prototorch.functions.distances.sed``
""" """
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)] x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
expanded_x = x.unsqueeze(dim=1) expanded_x = x.unsqueeze(dim=1)
batchwise_difference = y - expanded_x batchwise_difference = y - expanded_x
differences_raised = torch.pow(batchwise_difference, 2) differences_raised = torch.pow(batchwise_difference, 2)
@ -27,14 +27,14 @@ def euclidean_distance(x, y):
:returns: Distance Tensor of shape :math:`X \times Y` :returns: Distance Tensor of shape :math:`X \times Y`
:rtype: `torch.tensor` :rtype: `torch.tensor`
""" """
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)] x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
distances_raised = squared_euclidean_distance(x, y) distances_raised = squared_euclidean_distance(x, y)
distances = torch.sqrt(distances_raised) distances = torch.sqrt(distances_raised)
return distances return distances
def euclidean_distance_v2(x, y): def euclidean_distance_v2(x, y):
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)] x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
diff = y - x.unsqueeze(1) diff = y - x.unsqueeze(1)
pairwise_distances = (diff @ diff.permute((0, 2, 1))).sqrt() pairwise_distances = (diff @ diff.permute((0, 2, 1))).sqrt()
# Passing `dim1=-2` and `dim2=-1` to `diagonal()` takes the # Passing `dim1=-2` and `dim2=-1` to `diagonal()` takes the
@ -54,7 +54,7 @@ def lpnorm_distance(x, y, p):
:param p: p parameter of the lp norm :param p: p parameter of the lp norm
""" """
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)] x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
distances = torch.cdist(x, y, p=p) distances = torch.cdist(x, y, p=p)
return distances return distances
@ -66,7 +66,7 @@ def omega_distance(x, y, omega):
:param `torch.tensor` omega: Two dimensional matrix :param `torch.tensor` omega: Two dimensional matrix
""" """
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)] x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
projected_x = x @ omega projected_x = x @ omega
projected_y = y @ omega projected_y = y @ omega
distances = squared_euclidean_distance(projected_x, projected_y) distances = squared_euclidean_distance(projected_x, projected_y)
@ -80,7 +80,7 @@ def lomega_distance(x, y, omegas):
:param `torch.tensor` omegas: Three dimensional matrix :param `torch.tensor` omegas: Three dimensional matrix
""" """
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)] x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
projected_x = x @ omegas projected_x = x @ omegas
projected_y = torch.diagonal(y @ omegas).T projected_y = torch.diagonal(y @ omegas).T
expanded_y = torch.unsqueeze(projected_y, dim=1) expanded_y = torch.unsqueeze(projected_y, dim=1)

View File

@ -21,7 +21,7 @@ def cosine_similarity(x, y):
Expected dimension of x is 2. Expected dimension of x is 2.
Expected dimension of y is 2. Expected dimension of y is 2.
""" """
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)] x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
norm_x = x.pow(2).sum(1).sqrt() norm_x = x.pow(2).sum(1).sqrt()
norm_y = y.pow(2).sum(1).sqrt() norm_y = y.pow(2).sum(1).sqrt()
norm_mat = norm_x.unsqueeze(-1) @ norm_y.unsqueeze(-1).T norm_mat = norm_x.unsqueeze(-1) @ norm_y.unsqueeze(-1).T

View File

@ -20,7 +20,7 @@ class Dataset(torch.utils.data.Dataset):
_repr_indent = 2 _repr_indent = 2
def __init__(self, root): def __init__(self, root):
if isinstance(root, torch._six.string_classes): if isinstance(root, str):
root = os.path.expanduser(root) root = os.path.expanduser(root)
self.root = root self.root = root

View File

@ -5,8 +5,10 @@ URL:
""" """
from __future__ import annotations
import warnings import warnings
from typing import Sequence, Union from typing import Sequence
from sklearn.datasets import ( from sklearn.datasets import (
load_iris, load_iris,
@ -41,9 +43,9 @@ class Iris(NumpyDataset):
:param dims: select a subset of dimensions :param dims: select a subset of dimensions
""" """
def __init__(self, dims: Sequence[int] = None): def __init__(self, dims: Sequence[int] | None = None):
x, y = load_iris(return_X_y=True) x, y = load_iris(return_X_y=True)
if dims: if dims is not None:
x = x[:, dims] x = x[:, dims]
super().__init__(x, y) super().__init__(x, y)
@ -56,15 +58,19 @@ class Blobs(NumpyDataset):
""" """
def __init__(self, def __init__(
num_samples: int = 300, self,
num_features: int = 2, num_samples: int = 300,
seed: Union[None, int] = 0): num_features: int = 2,
x, y = make_blobs(num_samples, seed: None | int = 0,
num_features, ):
centers=None, x, y = make_blobs(
random_state=seed, num_samples,
shuffle=False) num_features,
centers=None,
random_state=seed,
shuffle=False,
)
super().__init__(x, y) super().__init__(x, y)
@ -77,29 +83,33 @@ class Random(NumpyDataset):
Note: n_classes * n_clusters_per_class <= 2**n_informative must satisfy. Note: n_classes * n_clusters_per_class <= 2**n_informative must satisfy.
""" """
def __init__(self, def __init__(
num_samples: int = 300, self,
num_features: int = 2, num_samples: int = 300,
num_classes: int = 2, num_features: int = 2,
num_clusters: int = 2, num_classes: int = 2,
num_informative: Union[None, int] = None, num_clusters: int = 2,
separation: float = 1.0, num_informative: None | int = None,
seed: Union[None, int] = 0): separation: float = 1.0,
seed: None | int = 0,
):
if not num_informative: if not num_informative:
import math import math
num_informative = math.ceil(math.log2(num_classes * num_clusters)) num_informative = math.ceil(math.log2(num_classes * num_clusters))
if num_features < num_informative: if num_features < num_informative:
warnings.warn("Generating more features than requested.") warnings.warn("Generating more features than requested.")
num_features = num_informative num_features = num_informative
x, y = make_classification(num_samples, x, y = make_classification(
num_features, num_samples,
n_informative=num_informative, num_features,
n_redundant=0, n_informative=num_informative,
n_classes=num_classes, n_redundant=0,
n_clusters_per_class=num_clusters, n_classes=num_classes,
class_sep=separation, n_clusters_per_class=num_clusters,
random_state=seed, class_sep=separation,
shuffle=False) random_state=seed,
shuffle=False,
)
super().__init__(x, y) super().__init__(x, y)
@ -113,16 +123,20 @@ class Circles(NumpyDataset):
""" """
def __init__(self, def __init__(
num_samples: int = 300, self,
noise: float = 0.3, num_samples: int = 300,
factor: float = 0.8, noise: float = 0.3,
seed: Union[None, int] = 0): factor: float = 0.8,
x, y = make_circles(num_samples, seed: None | int = 0,
noise=noise, ):
factor=factor, x, y = make_circles(
random_state=seed, num_samples,
shuffle=False) noise=noise,
factor=factor,
random_state=seed,
shuffle=False,
)
super().__init__(x, y) super().__init__(x, y)
@ -136,12 +150,16 @@ class Moons(NumpyDataset):
""" """
def __init__(self, def __init__(
num_samples: int = 300, self,
noise: float = 0.3, num_samples: int = 300,
seed: Union[None, int] = 0): noise: float = 0.3,
x, y = make_moons(num_samples, seed: None | int = 0,
noise=noise, ):
random_state=seed, x, y = make_moons(
shuffle=False) num_samples,
noise=noise,
random_state=seed,
shuffle=False,
)
super().__init__(x, y) super().__init__(x, y)

View File

@ -36,6 +36,7 @@ Description:
are determined by analytic chemistry. are determined by analytic chemistry.
""" """
import logging
import os import os
import numpy as np import numpy as np
@ -81,13 +82,11 @@ class Tecator(ProtoDataset):
if self._check_exists(): if self._check_exists():
return return
if self.verbose: logging.debug("Making directories...")
print("Making directories...")
os.makedirs(self.raw_folder, exist_ok=True) os.makedirs(self.raw_folder, exist_ok=True)
os.makedirs(self.processed_folder, exist_ok=True) os.makedirs(self.processed_folder, exist_ok=True)
if self.verbose: logging.debug("Downloading...")
print("Downloading...")
for fileid, md5 in self._resources: for fileid, md5 in self._resources:
filename = "tecator.npz" filename = "tecator.npz"
download_file_from_google_drive(fileid, download_file_from_google_drive(fileid,
@ -95,8 +94,7 @@ class Tecator(ProtoDataset):
filename=filename, filename=filename,
md5=md5) md5=md5)
if self.verbose: logging.debug("Processing...")
print("Processing...")
with np.load(os.path.join(self.raw_folder, "tecator.npz"), with np.load(os.path.join(self.raw_folder, "tecator.npz"),
allow_pickle=False) as f: allow_pickle=False) as f:
x_train, y_train = f["x_train"], f["y_train"] x_train, y_train = f["x_train"], f["y_train"]
@ -117,5 +115,4 @@ class Tecator(ProtoDataset):
"wb") as f: "wb") as f:
torch.save(test_set, f) torch.save(test_set, f)
if self.verbose: logging.debug("Done!")
print("Done!")

View File

@ -5,6 +5,7 @@ from typing import (
Dict, Dict,
Iterable, Iterable,
List, List,
Optional,
Union, Union,
) )
@ -18,7 +19,7 @@ def generate_mesh(
maxima: torch.TensorType, maxima: torch.TensorType,
border: float = 1.0, border: float = 1.0,
resolution: int = 100, resolution: int = 100,
device: torch.device = None, device: Optional[torch.device] = None,
): ):
# Apply Border # Apply Border
ptp = maxima - minima ptp = maxima - minima
@ -55,14 +56,15 @@ def mesh2d(x=None, border: float = 1.0, resolution: int = 100):
def distribution_from_list(list_dist: List[int], def distribution_from_list(list_dist: List[int],
clabels: Iterable[int] = None): clabels: Optional[Iterable[int]] = None):
clabels = clabels or list(range(len(list_dist))) clabels = clabels or list(range(len(list_dist)))
distribution = dict(zip(clabels, list_dist)) distribution = dict(zip(clabels, list_dist))
return distribution return distribution
def parse_distribution(user_distribution, def parse_distribution(
clabels: Iterable[int] = None) -> Dict[int, int]: user_distribution,
clabels: Optional[Iterable[int]] = None) -> Dict[int, int]:
"""Parse user-provided distribution. """Parse user-provided distribution.
Return a dictionary with integer keys that represent the class labels and Return a dictionary with integer keys that represent the class labels and

View File

@ -15,14 +15,14 @@ from setuptools import find_packages, setup
PROJECT_URL = "https://github.com/si-cim/prototorch" PROJECT_URL = "https://github.com/si-cim/prototorch"
DOWNLOAD_URL = "https://github.com/si-cim/prototorch.git" DOWNLOAD_URL = "https://github.com/si-cim/prototorch.git"
with open("README.md", "r") as fh: with open("README.md", encoding="utf-8") as fh:
long_description = fh.read() long_description = fh.read()
INSTALL_REQUIRES = [ INSTALL_REQUIRES = [
"torch>=1.3.1", "torch>=2.0.0",
"torchvision>=0.7.3", "torchvision",
"numpy>=1.9.1", "numpy",
"sklearn", "scikit-learn",
"matplotlib", "matplotlib",
] ]
DATASETS = [ DATASETS = [
@ -51,7 +51,7 @@ ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
setup( setup(
name="prototorch", name="prototorch",
version="0.7.3", version="0.7.6",
description="Highly extensible, GPU-supported " description="Highly extensible, GPU-supported "
"Learning Vector Quantization (LVQ) toolbox " "Learning Vector Quantization (LVQ) toolbox "
"built using PyTorch and its nn API.", "built using PyTorch and its nn API.",
@ -62,7 +62,7 @@ setup(
url=PROJECT_URL, url=PROJECT_URL,
download_url=DOWNLOAD_URL, download_url=DOWNLOAD_URL,
license="MIT", license="MIT",
python_requires=">=3.7", python_requires=">=3.8",
install_requires=INSTALL_REQUIRES, install_requires=INSTALL_REQUIRES,
extras_require={ extras_require={
"datasets": DATASETS, "datasets": DATASETS,
@ -85,10 +85,10 @@ setup(
"License :: OSI Approved :: MIT License", "License :: OSI Approved :: MIT License",
"Operating System :: OS Independent", "Operating System :: OS Independent",
"Programming Language :: Python :: 3", "Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
], ],
packages=find_packages(), packages=find_packages(),
zip_safe=False, zip_safe=False,

View File

@ -1,7 +1,6 @@
"""ProtoTorch datasets test suite""" """ProtoTorch datasets test suite"""
import os import os
import shutil
import unittest import unittest
import numpy as np import numpy as np