39 Commits

Author SHA1 Message Date
Jensun Ravichandran
17b45249f4 Add scaffolding 2021-06-08 01:13:59 +02:00
Jensun Ravichandran
4f1c879528 [BUGFIX] Update unit tests 2021-06-04 22:29:30 +02:00
Jensun Ravichandran
2272c55092 [BUGFIX] Fix typo 2021-06-04 22:24:42 +02:00
Jensun Ravichandran
b03c9b1d3c Add competition and pooling modules 2021-06-04 22:18:46 +02:00
Jensun Ravichandran
0c28eda706 [FEATURE] Remove utility modules and add wrappers instead 2021-06-04 22:16:55 +02:00
Jensun Ravichandran
7bc0bfa3ab Rename loss functions 2021-06-04 22:15:57 +02:00
Jensun Ravichandran
827958a28a [FEATURE] Optional transforms in DataAwareInitializers 2021-06-04 22:14:45 +02:00
Jensun Ravichandran
8200e1d3d8 [FEATURE] Allow initialized_components to be a dataset 2021-06-04 22:13:36 +02:00
Jensun Ravichandran
729b20e9ab [FEATURE] Add scale to random initializer 2021-06-03 16:35:44 +02:00
Alexander Engelsberger
ca8ac7a43b [REFACTOR] Probabilistic losses 2021-06-03 14:01:13 +02:00
Alexander Engelsberger
b724a28a6f [BUGFIX] Stratified functions work on GPU now 2021-06-03 13:19:26 +02:00
Jensun Ravichandran
1e0a8392a2 [QA] Fix for "redefined-builtin" (W0622) 2021-06-02 00:07:44 +02:00
Jensun Ravichandran
2eb7b05653 [FEATURE] Add wrappers for more sklearn datasets 2021-06-01 23:33:51 +02:00
Jensun Ravichandran
d8a0b2dfcc Minor tweaks 2021-06-01 23:28:01 +02:00
Jensun Ravichandran
2a7394b593 [QA] Remove commented-out torch.jit.script decorators 2021-06-01 19:46:21 +02:00
Jensun Ravichandran
b1e64c8b8b [QA] Remove utils.py 2021-06-01 19:41:48 +02:00
Jensun Ravichandran
70cf17607e [BUGFIX] Fix broken _precheck_initializer 2021-06-01 19:41:21 +02:00
Jensun Ravichandran
b1568a550a [QA] Fix for "no-self-use" (R0201) 2021-06-01 19:26:05 +02:00
Jensun Ravichandran
e8e803e8ef [QA] Fix for "dangerous-default-value" (W0102) 2021-06-01 19:24:00 +02:00
Jensun Ravichandran
2c453265fe [QA] Remove duplicate headings 2021-06-01 19:18:37 +02:00
Jensun Ravichandran
7336d35fee [QA] Fix "dangerous-default-value" (W0102) 2021-06-01 19:15:06 +02:00
Jensun Ravichandran
bc18952c05 [QA] Fix "dangerous-default-value" (W0102) 2021-06-01 19:10:53 +02:00
Jensun Ravichandran
8e8d0b9c2c [QA] Fix "list-item-bullet-indent" 2021-06-01 19:08:37 +02:00
Jensun Ravichandran
5a7da2b40b [QA] Fix for "no-value-for-parameter" (E1120) 2021-06-01 19:03:57 +02:00
Jensun Ravichandran
b6d38f442b [QA] Remove trailing whitespace 2021-06-01 19:01:20 +02:00
Jensun Ravichandran
8e8851d962 Dynamically remove components 2021-06-01 18:45:47 +02:00
Jensun Ravichandran
27b43b06a7 Rename functions/transform.py -> functions/transforms.py 2021-06-01 17:43:23 +02:00
Jensun Ravichandran
ff69eb1256 Tecator.data is a Tensor and Tecator.targets is a LongTensor 2021-06-01 17:28:37 +02:00
Alexander Engelsberger
4ca581909a [FEATURE] Change NumpyDataset.data to torch.Tensor 2021-06-01 17:17:42 +02:00
Alexander Engelsberger
2722d976f5 [WIP] Add Growing Neural Gas Energy 2021-06-01 17:16:26 +02:00
Jensun Ravichandran
946cda00d2 Add more competition functions 2021-06-01 12:37:21 +02:00
Jensun Ravichandran
8227525c82 Add LambdaLayer 2021-05-31 16:47:20 +02:00
Jensun Ravichandran
e61ae73749 Make components dynamic 2021-05-31 00:31:40 +02:00
Alexander Engelsberger
040d1ee9e8 Add probabilistic losses
Based on Soft LVQ paper by Seo and Obermayer
2021-05-28 20:38:50 +02:00
Alexander Engelsberger
7f0da894fa Add transformation from distances into gaussian distribution 2021-05-28 16:50:04 +02:00
Alexander Engelsberger
62726df278 Add stratified sum as competition
For example used in RSLVQ
2021-05-28 16:49:39 +02:00
Alexander Engelsberger
0ba09db6fe Bump version: 0.4.5 → 0.5.0 2021-05-28 16:17:49 +02:00
Alexander Engelsberger
87334c11e6 Remove Prototypes1D and its tests 2021-05-28 16:17:49 +02:00
Alexander Engelsberger
40ef3aeda2 Remove usage of Prototype1D
Update Iris example to new component API
Update Tecator example to new component API
Update LGMLVQ example to new component API
Update GTLVQ to new component API
2021-05-28 16:17:40 +02:00
36 changed files with 856 additions and 972 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.4.5
current_version = 0.5.0
commit = True
tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)

View File

@@ -23,9 +23,9 @@ A clear and concise description of what you expected to happen.
If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):**
- OS: [e.g. Ubuntu 20.10]
- Prototorch Version: [e.g. v0.4.0]
- Python Version: [e.g. 3.9.5]
- OS: [e.g. Ubuntu 20.10]
- Prototorch Version: [e.g. v0.4.0]
- Python Version: [e.g. 3.9.5]
**Additional context**
Add any other context about the problem here.
Add any other context about the problem here.

View File

@@ -1,13 +1,16 @@
# ProtoTorch Releases
## Release 0.5.0
- Breaking: Removed deprecated `prototorch.modules.Prototypes1D`.
- Use `prototorch.components.LabeledComponents` instead.
## Release 0.2.0
### Includes
- Fixes in example scripts.
## Release 0.1.1-dev0
### Includes
- Minor bugfixes.
- 100% line coverage.

View File

@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags
#
release = "0.4.5"
release = "0.5.0"
# -- General configuration ---------------------------------------------------

View File

@@ -3,10 +3,10 @@
import numpy as np
import torch
from matplotlib import pyplot as plt
from prototorch.components import LabeledComponents, StratifiedMeanInitializer
from prototorch.functions.competitions import wtac
from prototorch.functions.distances import euclidean_distance
from prototorch.modules.losses import GLVQLoss
from prototorch.modules.prototypes import Prototypes1D
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from torchinfo import summary
@@ -24,19 +24,17 @@ class Model(torch.nn.Module):
def __init__(self):
"""GLVQ model for training on 2D Iris data."""
super().__init__()
self.proto_layer = Prototypes1D(
input_dim=2,
prototypes_per_class=3,
num_classes=3,
prototype_initializer="stratified_random",
data=[x_train, y_train],
prototype_initializer = StratifiedMeanInitializer([x_train, y_train])
prototype_distribution = {"num_classes": 3, "prototypes_per_class": 3}
self.proto_layer = LabeledComponents(
prototype_distribution,
prototype_initializer,
)
def forward(self, x):
protos = self.proto_layer.prototypes
plabels = self.proto_layer.prototype_labels
dis = euclidean_distance(x, protos)
return dis, plabels
prototypes, prototype_labels = self.proto_layer()
distances = euclidean_distance(x, prototypes)
return distances, prototype_labels
# Build the GLVQ model
@@ -53,43 +51,46 @@ x_in = torch.Tensor(x_train)
y_in = torch.Tensor(y_train)
# Training loop
title = "Prototype Visualization"
fig = plt.figure(title)
TITLE = "Prototype Visualization"
fig = plt.figure(TITLE)
for epoch in range(70):
# Compute loss
dis, plabels = model(x_in)
loss = criterion([dis, plabels], y_in)
distances, prototype_labels = model(x_in)
loss = criterion([distances, prototype_labels], y_in)
# Compute Accuracy
with torch.no_grad():
pred = wtac(dis, plabels)
correct = pred.eq(y_in.view_as(pred)).sum().item()
predictions = wtac(distances, prototype_labels)
correct = predictions.eq(y_in.view_as(predictions)).sum().item()
acc = 100.0 * correct / len(x_train)
print(
f"Epoch: {epoch + 1:03d} Loss: {loss.item():05.02f} Acc: {acc:05.02f}%"
)
# Take a gradient descent step
# Optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Get the prototypes form the model
protos = model.proto_layer.prototypes.data.numpy()
if np.isnan(np.sum(protos)):
prototypes = model.proto_layer.components.numpy()
if np.isnan(np.sum(prototypes)):
print("Stopping training because of `nan` in prototypes.")
break
# Visualize the data and the prototypes
ax = fig.gca()
ax.cla()
ax.set_title(title)
ax.set_title(TITLE)
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
cmap = "viridis"
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(
protos[:, 0],
protos[:, 1],
c=plabels,
prototypes[:, 0],
prototypes[:, 1],
c=prototype_labels,
cmap=cmap,
edgecolor="k",
marker="D",
@@ -97,7 +98,7 @@ for epoch in range(70):
)
# Paint decision regions
x = np.vstack((x_train, protos))
x = np.vstack((x_train, prototypes))
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
@@ -107,7 +108,7 @@ for epoch in range(70):
torch_input = torch.Tensor(mesh_input)
d = model(torch_input)[0]
w_indices = torch.argmin(d, dim=1)
y_pred = torch.index_select(plabels, 0, w_indices)
y_pred = torch.index_select(prototype_labels, 0, w_indices)
y_pred = y_pred.reshape(xx.shape)
# Plot voronoi regions

View File

@@ -2,9 +2,9 @@
import matplotlib.pyplot as plt
import torch
from prototorch.components import LabeledComponents, StratifiedMeanInitializer
from prototorch.datasets.tecator import Tecator
from prototorch.functions.distances import sed
from prototorch.modules import Prototypes1D
from prototorch.modules.losses import GLVQLoss
from prototorch.utils.colors import get_legend_handles
from torch.utils.data import DataLoader
@@ -18,22 +18,22 @@ class Model(torch.nn.Module):
def __init__(self, **kwargs):
"""GMLVQ model as a siamese network."""
super().__init__()
x, y = train_data.data, train_data.targets
self.p1 = Prototypes1D(
input_dim=100,
prototypes_per_class=2,
num_classes=2,
prototype_initializer="stratified_random",
data=[x, y],
prototype_initializer = StratifiedMeanInitializer(train_loader)
prototype_distribution = {"num_classes": 2, "prototypes_per_class": 2}
self.proto_layer = LabeledComponents(
prototype_distribution,
prototype_initializer,
)
self.omega = torch.nn.Linear(in_features=100,
out_features=100,
bias=False)
torch.nn.init.eye_(self.omega.weight)
def forward(self, x):
protos = self.p1.prototypes
plabels = self.p1.prototype_labels
protos = self.proto_layer.components
plabels = self.proto_layer.component_labels
# Process `x` and `protos` through `omega`
x_map = self.omega(x)
@@ -85,8 +85,8 @@ im = ax.imshow(omega.dot(omega.T), cmap="viridis")
plt.show()
# Get the prototypes form the model
protos = model.p1.prototypes.data.numpy()
plabels = model.p1.prototype_labels
protos = model.proto_layer.components.numpy()
plabels = model.proto_layer.component_labels.numpy()
# Visualize the prototypes
title = "Tecator Prototypes"

View File

@@ -24,7 +24,7 @@ batch_size_test = 1000
learning_rate = 0.1
momentum = 0.5
log_interval = 10
cuda = "cuda:1"
cuda = "cuda:0"
random_seed = 1
device = torch.device(cuda if torch.cuda.is_available() else "cpu")
@@ -147,7 +147,7 @@ for epoch in range(num_epochs):
optimizer.zero_grad()
distances = model(x_train)
plabels = model.gtlvq.cls.prototype_labels.to(device)
plabels = model.gtlvq.cls.component_labels.to(device)
# Compute loss.
loss = criterion([distances, plabels], y_train)

View File

@@ -3,14 +3,12 @@
import numpy as np
import torch
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from prototorch.components import LabeledComponents, StratifiedMeanInitializer
from prototorch.functions.competitions import stratified_min
from prototorch.functions.distances import lomega_distance
from prototorch.functions.init import eye_
from prototorch.modules.losses import GLVQLoss
from prototorch.modules.prototypes import Prototypes1D
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
# Prepare training data
x_train, y_train = load_iris(True)
@@ -22,19 +20,19 @@ class Model(torch.nn.Module):
def __init__(self):
"""Local-GMLVQ model."""
super().__init__()
self.p1 = Prototypes1D(
input_dim=2,
prototype_distribution=[1, 2, 2],
prototype_initializer="stratified_random",
data=[x_train, y_train],
prototype_initializer = StratifiedMeanInitializer([x_train, y_train])
prototype_distribution = [1, 2, 2]
self.proto_layer = LabeledComponents(
prototype_distribution,
prototype_initializer,
)
omegas = torch.zeros(5, 2, 2)
omegas = torch.eye(2, 2).repeat(5, 1, 1)
self.omegas = torch.nn.Parameter(omegas)
eye_(self.omegas)
def forward(self, x):
protos = self.p1.prototypes
plabels = self.p1.prototype_labels
protos, plabels = self.proto_layer()
omegas = self.omegas
dis = lomega_distance(x, protos, omegas)
return dis, plabels
@@ -69,7 +67,7 @@ for epoch in range(100):
optimizer.step()
# Get the prototypes form the model
protos = model.p1.prototypes.data.numpy()
protos = model.proto_layer.components.numpy()
# Visualize the data and the prototypes
ax = fig.gca()

View File

@@ -8,7 +8,7 @@ from . import components, datasets, functions, modules, utils
from .datasets import *
# Core Setup
__version__ = "0.4.5"
__version__ = "0.5.0"
__all_core__ = [
"datasets",

View File

@@ -11,6 +11,36 @@ from prototorch.components.initializers import (ClassAwareInitializer,
ZeroReasoningsInitializer)
from torch.nn.parameter import Parameter
from .initializers import parse_data_arg
def get_labels_object(distribution):
if isinstance(distribution, dict):
if "num_classes" in distribution.keys():
labels = EqualLabelsInitializer(
distribution["num_classes"],
distribution["prototypes_per_class"])
else:
labels = CustomLabelsInitializer(distribution)
elif isinstance(distribution, tuple):
num_classes, prototypes_per_class = distribution
labels = EqualLabelsInitializer(num_classes, prototypes_per_class)
elif isinstance(distribution, list):
labels = UnequalLabelsInitializer(distribution)
else:
msg = f"`distribution` not understood." \
f"You have provided: {distribution=}."
raise ValueError(msg)
return labels
def _precheck_initializer(initializer):
if not isinstance(initializer, ComponentsInitializer):
emsg = f"`initializer` has to be some subtype of " \
f"{ComponentsInitializer}. " \
f"You have provided: {initializer=} instead."
raise TypeError(emsg)
class Components(torch.nn.Module):
"""Components is a set of learnable Tensors."""
@@ -21,29 +51,46 @@ class Components(torch.nn.Module):
initialized_components=None):
super().__init__()
self.num_components = num_components
# Ignore all initialization settings if initialized_components is given.
if initialized_components is not None:
self.register_parameter("_components",
Parameter(initialized_components))
self._register_components(initialized_components)
if num_components is not None or initializer is not None:
wmsg = "Arguments ignored while initializing Components"
warnings.warn(wmsg)
else:
self._initialize_components(initializer)
self._initialize_components(num_components, initializer)
def _precheck_initializer(self, initializer):
if not isinstance(initializer, ComponentsInitializer):
emsg = f"`initializer` has to be some subtype of " \
f"{ComponentsInitializer}. " \
f"You have provided: {initializer=} instead."
raise TypeError(emsg)
@property
def num_components(self):
return len(self._components)
def _initialize_components(self, initializer):
self._precheck_initializer(initializer)
_components = initializer.generate(self.num_components)
self.register_parameter("_components", Parameter(_components))
def _register_components(self, components):
self.register_parameter("_components", Parameter(components))
def _initialize_components(self, num_components, initializer):
_precheck_initializer(initializer)
_components = initializer.generate(num_components)
self._register_components(_components)
def add_components(self,
num=1,
initializer=None,
*,
initialized_components=None):
if initialized_components is not None:
_components = torch.cat([self._components, initialized_components])
else:
_precheck_initializer(initializer)
_new = initializer.generate(num)
_components = torch.cat([self._components, _new])
self._register_components(_components)
def remove_components(self, indices=None):
mask = torch.ones(self.num_components, dtype=torch.bool)
mask[indices] = False
_components = self._components[mask]
self._register_components(_components)
return mask
@property
def components(self):
@@ -54,7 +101,7 @@ class Components(torch.nn.Module):
return self._components
def extra_repr(self):
return f"components.shape: {tuple(self._components.shape)}"
return f"(components): (shape: {tuple(self._components.shape)})"
class LabeledComponents(Components):
@@ -68,39 +115,60 @@ class LabeledComponents(Components):
*,
initialized_components=None):
if initialized_components is not None:
components, component_labels = initialized_components
components, component_labels = parse_data_arg(
initialized_components)
super().__init__(initialized_components=components)
self._labels = component_labels
else:
_labels = self._initialize_labels(distribution)
labels = get_labels_object(distribution)
self.initial_distribution = labels.distribution
_labels = labels.generate()
super().__init__(len(_labels), initializer=initializer)
self.register_buffer("_labels", _labels)
self._register_labels(_labels)
def _initialize_components(self, initializer):
def _register_labels(self, labels):
self.register_buffer("_labels", labels)
@property
def distribution(self):
clabels, counts = torch.unique(self._labels,
sorted=True,
return_counts=True)
return dict(zip(clabels.tolist(), counts.tolist()))
def _initialize_components(self, num_components, initializer):
if isinstance(initializer, ClassAwareInitializer):
self._precheck_initializer(initializer)
_components = initializer.generate(self.num_components,
self.distribution)
self.register_parameter("_components", Parameter(_components))
_precheck_initializer(initializer)
_components = initializer.generate(num_components,
self.initial_distribution)
self._register_components(_components)
else:
super()._initialize_components(initializer)
super()._initialize_components(num_components, initializer)
def _initialize_labels(self, distribution):
if type(distribution) == dict:
if "num_classes" in distribution.keys():
labels = EqualLabelsInitializer(
distribution["num_classes"],
distribution["prototypes_per_class"])
else:
labels = CustomLabelsInitializer(distribution)
elif type(distribution) == tuple:
num_classes, prototypes_per_class = distribution
labels = EqualLabelsInitializer(num_classes, prototypes_per_class)
elif type(distribution) == list:
labels = UnequalLabelsInitializer(distribution)
def add_components(self, distribution, initializer):
_precheck_initializer(initializer)
self.distribution = labels.distribution
return labels.generate()
# Labels
labels = get_labels_object(distribution)
new_labels = labels.generate()
_labels = torch.cat([self._labels, new_labels])
self._register_labels(_labels)
# Components
if isinstance(initializer, ClassAwareInitializer):
_new = initializer.generate(len(new_labels), labels.distribution)
else:
_new = initializer.generate(len(new_labels))
_components = torch.cat([self._components, _new])
self._register_components(_components)
def remove_components(self, indices=None):
# Components
mask = super().remove_components(indices)
# Labels
_labels = self._labels[mask]
self._register_labels(_labels)
@property
def component_labels(self):
@@ -141,7 +209,7 @@ class ReasoningComponents(Components):
super().__init__(len(self._reasonings), initializer=initializer)
def _initialize_reasonings(self, reasonings):
if type(reasonings) == tuple:
if isinstance(reasonings, tuple):
num_classes, num_components = reasonings
reasonings = ZeroReasoningsInitializer(num_classes, num_components)

View File

@@ -1,4 +1,5 @@
"""ProtoTroch Initializers."""
"""ProtoTroch Component and Label Initializers."""
import warnings
from collections.abc import Iterable
from itertools import chain
@@ -13,21 +14,30 @@ def parse_data_arg(data_arg):
if isinstance(data_arg, DataLoader):
data = torch.tensor([])
labels = torch.tensor([])
targets = torch.tensor([])
for x, y in data_arg:
data = torch.cat([data, x])
labels = torch.cat([labels, y])
targets = torch.cat([targets, y])
else:
data, labels = data_arg
data, targets = data_arg
if not isinstance(data, torch.Tensor):
wmsg = f"Converting data to {torch.Tensor}."
warnings.warn(wmsg)
data = torch.Tensor(data)
if not isinstance(labels, torch.Tensor):
wmsg = f"Converting labels to {torch.Tensor}."
if not isinstance(targets, torch.Tensor):
wmsg = f"Converting targets to {torch.Tensor}."
warnings.warn(wmsg)
labels = torch.Tensor(labels)
return data, labels
targets = torch.Tensor(targets)
return data, targets
def get_subinitializers(data, targets, clabels, subinit_type):
initializers = dict()
for clabel in clabels:
class_data = data[targets == clabel]
class_initializer = subinit_type(class_data)
initializers[clabel] = (class_initializer)
return initializers
# Components
@@ -37,18 +47,22 @@ class ComponentsInitializer(object):
class DimensionAwareInitializer(ComponentsInitializer):
def __init__(self, c_dims):
def __init__(self, dims):
super().__init__()
if isinstance(c_dims, Iterable):
self.components_dims = tuple(c_dims)
if isinstance(dims, Iterable):
self.components_dims = tuple(dims)
else:
self.components_dims = (c_dims, )
self.components_dims = (dims, )
class OnesInitializer(DimensionAwareInitializer):
def __init__(self, dims, scale=1.0):
super().__init__(dims)
self.scale = scale
def generate(self, length):
gen_dims = (length, ) + self.components_dims
return torch.ones(gen_dims)
return torch.ones(gen_dims) * self.scale
class ZerosInitializer(DimensionAwareInitializer):
@@ -58,78 +72,73 @@ class ZerosInitializer(DimensionAwareInitializer):
class UniformInitializer(DimensionAwareInitializer):
def __init__(self, c_dims, min=0.0, max=1.0):
super().__init__(c_dims)
self.min = min
self.max = max
def __init__(self, dims, minimum=0.0, maximum=1.0, scale=1.0):
super().__init__(dims)
self.minimum = minimum
self.maximum = maximum
self.scale = scale
def generate(self, length):
gen_dims = (length, ) + self.components_dims
return torch.ones(gen_dims).uniform_(self.min, self.max)
return torch.ones(gen_dims).uniform_(self.minimum,
self.maximum) * self.scale
class DataAwareInitializer(ComponentsInitializer):
def __init__(self, data):
def __init__(self, data, transform=torch.nn.Identity()):
super().__init__()
self.data = data
self.transform = transform
def __del__(self):
del self.data
class SelectionInitializer(DataAwareInitializer):
def generate(self, length):
indices = torch.LongTensor(length).random_(0, len(self.data))
return self.data[indices]
return self.transform(self.data[indices])
class MeanInitializer(DataAwareInitializer):
def generate(self, length):
mean = torch.mean(self.data, dim=0)
repeat_dim = [length] + [1] * len(mean.shape)
return mean.repeat(repeat_dim)
return self.transform(mean.repeat(repeat_dim))
class ClassAwareInitializer(ComponentsInitializer):
class ClassAwareInitializer(DataAwareInitializer):
def __init__(self, data, transform=torch.nn.Identity()):
super().__init__()
data, labels = parse_data_arg(data)
self.data = data
self.labels = labels
self.transform = transform
self.clabels = torch.unique(self.labels)
data, targets = parse_data_arg(data)
super().__init__(data, transform)
self.targets = targets
self.clabels = torch.unique(self.targets).int().tolist()
self.num_classes = len(self.clabels)
def _get_samples_from_initializer(self, length, dist):
if not dist:
per_class = length // self.num_classes
dist = self.num_classes * [per_class]
if type(dist) == dict:
dist = dist.values()
samples_list = [
init.generate(n) for init, n in zip(self.initializers, dist)
]
out = torch.vstack(samples_list)
dist = dict(zip(self.clabels, self.num_classes * [per_class]))
if isinstance(dist, list):
dist = dict(zip(self.clabels, dist))
samples = [self.initializers[k].generate(n) for k, n in dist.items()]
out = torch.vstack(samples)
with torch.no_grad():
out = self.transform(out)
return out
def __del__(self):
del self.data
del self.labels
del self.targets
class StratifiedMeanInitializer(ClassAwareInitializer):
def __init__(self, data, **kwargs):
super().__init__(data, **kwargs)
self.initializers = get_subinitializers(self.data, self.targets,
self.clabels, MeanInitializer)
self.initializers = []
for clabel in self.clabels:
class_data = self.data[self.labels == clabel]
class_initializer = MeanInitializer(class_data)
self.initializers.append(class_initializer)
def generate(self, length, dist=[]):
def generate(self, length, dist):
samples = self._get_samples_from_initializer(length, dist)
return samples
@@ -138,12 +147,9 @@ class StratifiedSelectionInitializer(ClassAwareInitializer):
def __init__(self, data, noise=None, **kwargs):
super().__init__(data, **kwargs)
self.noise = noise
self.initializers = []
for clabel in self.clabels:
class_data = self.data[self.labels == clabel]
class_initializer = SelectionInitializer(class_data)
self.initializers.append(class_initializer)
self.initializers = get_subinitializers(self.data, self.targets,
self.clabels,
SelectionInitializer)
def add_noise_v1(self, x):
return x + self.noise
@@ -155,7 +161,7 @@ class StratifiedSelectionInitializer(ClassAwareInitializer):
mask = torch.bernoulli(n1) - torch.bernoulli(n2)
return x + (self.noise * mask)
def generate(self, length, dist=[]):
def generate(self, length, dist):
samples = self._get_samples_from_initializer(length, dist)
if self.noise is not None:
samples = self.add_noise_v1(samples)
@@ -181,8 +187,8 @@ class UnequalLabelsInitializer(LabelsInitializer):
clabels = range(len(self.dist))
if not dist:
dist = self.dist
labels = list(chain(*[[i] * n for i, n in zip(clabels, dist)]))
return torch.LongTensor(labels)
targets = list(chain(*[[i] * n for i, n in zip(clabels, dist)]))
return torch.LongTensor(targets)
class EqualLabelsInitializer(LabelsInitializer):

View File

@@ -1,8 +1,6 @@
"""ProtoTorch datasets."""
from .abstract import NumpyDataset
from .iris import Iris
from .sklearn import Blobs, Circles, Iris, Moons, Random
from .spiral import Spiral
from .tecator import Tecator
__all__ = ['Iris', 'Spiral', 'Tecator']

View File

@@ -15,9 +15,9 @@ import torch
class NumpyDataset(torch.utils.data.TensorDataset):
"""Create a PyTorch TensorDataset from NumPy arrays."""
def __init__(self, data, targets):
self.data = data
self.targets = targets
tensors = [torch.Tensor(data), torch.Tensor(targets)]
self.data = torch.Tensor(data)
self.targets = torch.LongTensor(targets)
tensors = [self.data, self.targets]
super().__init__(*tensors)

View File

@@ -1,40 +0,0 @@
"""Thin wrapper for the Iris classification dataset from sklearn.
URL:
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
"""
from typing import Sequence
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import load_iris
class Iris(NumpyDataset):
"""
Iris Dataset by Ronald Fisher introduced in 1936.
The dataset contains four measurements from flowers of three species of iris.
.. list-table:: Iris
:header-rows: 1
* - dimensions
- classes
- training size
- validation size
- test size
* - 4
- 3
- 150
- 0
- 0
:param dims: select a subset of dimensions
"""
def __init__(self, dims: Sequence[int] = None):
x, y = load_iris(return_X_y=True)
if dims:
x = x[:, dims]
super().__init__(x, y)

View File

@@ -0,0 +1,137 @@
"""Thin wrappers for a few scikit-learn datasets.
URL:
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
"""
import warnings
from typing import Sequence, Union
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import (load_iris, make_blobs, make_circles,
make_classification, make_moons)
class Iris(NumpyDataset):
"""Iris Dataset by Ronald Fisher introduced in 1936.
The dataset contains four measurements from flowers of three species of iris.
.. list-table:: Iris
:header-rows: 1
* - dimensions
- classes
- training size
- validation size
- test size
* - 4
- 3
- 150
- 0
- 0
:param dims: select a subset of dimensions
"""
def __init__(self, dims: Sequence[int] = None):
x, y = load_iris(return_X_y=True)
if dims:
x = x[:, dims]
super().__init__(x, y)
class Blobs(NumpyDataset):
"""Generate isotropic Gaussian blobs for clustering.
Read more at
https://scikit-learn.org/stable/datasets/sample_generators.html#sample-generators.
"""
def __init__(self,
num_samples: int = 300,
num_features: int = 2,
seed: Union[None, int] = 0):
x, y = make_blobs(num_samples,
num_features,
centers=None,
random_state=seed,
shuffle=False)
super().__init__(x, y)
class Random(NumpyDataset):
"""Generate a random n-class classification problem.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html.
Note: n_classes * n_clusters_per_class <= 2**n_informative must satisfy.
"""
def __init__(self,
num_samples: int = 300,
num_features: int = 2,
num_classes: int = 2,
num_clusters: int = 2,
num_informative: Union[None, int] = None,
separation: float = 1.0,
seed: Union[None, int] = 0):
if not num_informative:
import math
num_informative = math.ceil(math.log2(num_classes * num_clusters))
if num_features < num_informative:
warnings.warn("Generating more features than requested.")
num_features = num_informative
x, y = make_classification(num_samples,
num_features,
n_informative=num_informative,
n_redundant=0,
n_classes=num_classes,
n_clusters_per_class=num_clusters,
class_sep=separation,
random_state=seed,
shuffle=False)
super().__init__(x, y)
class Circles(NumpyDataset):
"""Make a large circle containing a smaller circle in 2D.
A simple toy dataset to visualize clustering and classification algorithms.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
"""
def __init__(self,
num_samples: int = 300,
noise: float = 0.3,
factor: float = 0.8,
seed: Union[None, int] = 0):
x, y = make_circles(num_samples,
noise=noise,
factor=factor,
random_state=seed,
shuffle=False)
super().__init__(x, y)
class Moons(NumpyDataset):
"""Make two interleaving half circles.
A simple toy dataset to visualize clustering and classification algorithms.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
"""
def __init__(self,
num_samples: int = 300,
noise: float = 0.3,
seed: Union[None, int] = 0):
x, y = make_moons(num_samples,
noise=noise,
random_state=seed,
shuffle=False)
super().__init__(x, y)

View File

@@ -6,7 +6,7 @@ import torch
def make_spiral(num_samples=500, noise=0.3):
"""Generates the Spiral Dataset.
For use in Prototorch use `prototorch.datasets.Spiral` instead.
"""
def get_samples(n, delta_t):

View File

@@ -101,12 +101,12 @@ class Tecator(ProtoDataset):
x_train, y_train = f["x_train"], f["y_train"]
x_test, y_test = f["x_test"], f["y_test"]
training_set = [
torch.tensor(x_train, dtype=torch.float32),
torch.tensor(y_train),
torch.Tensor(x_train),
torch.LongTensor(y_train),
]
test_set = [
torch.tensor(x_test, dtype=torch.float32),
torch.tensor(y_test),
torch.Tensor(x_test),
torch.LongTensor(y_test),
]
with open(os.path.join(self.processed_folder, self.training_file),

View File

@@ -2,11 +2,4 @@
from .activations import identity, sigmoid_beta, swish_beta
from .competitions import knnc, wtac
__all__ = [
"identity",
"sigmoid_beta",
"swish_beta",
"knnc",
"wtac",
]
from .pooling import *

View File

@@ -5,17 +5,14 @@ import torch
ACTIVATIONS = dict()
# def register_activation(scriptf):
# ACTIVATIONS[scriptf.name] = scriptf
# return scriptf
def register_activation(function):
def register_activation(fn):
"""Add the activation function to the registry."""
ACTIVATIONS[function.__name__] = function
return function
name = fn.__name__
ACTIVATIONS[name] = fn
return fn
@register_activation
# @torch.jit.script
def identity(x, beta=0.0):
"""Identity activation function.
@@ -29,7 +26,6 @@ def identity(x, beta=0.0):
@register_activation
# @torch.jit.script
def sigmoid_beta(x, beta=10.0):
r"""Sigmoid activation function with scaling.
@@ -44,7 +40,6 @@ def sigmoid_beta(x, beta=10.0):
@register_activation
# @torch.jit.script
def swish_beta(x, beta=10.0):
r"""Swish activation function with scaling.

View File

@@ -3,42 +3,26 @@
import torch
def stratified_min(distances, labels):
clabels = torch.unique(labels, dim=0)
num_classes = clabels.size()[0]
if distances.size()[1] == num_classes:
# skip if only one prototype per class
return distances
batch_size = distances.size()[0]
winning_distances = torch.zeros(num_classes, batch_size)
inf = torch.full_like(distances.T, fill_value=float("inf"))
# distances_to_wpluses = torch.where(matcher, distances, inf)
for i, cl in enumerate(clabels):
# cdists = distances.T[labels == cl]
matcher = torch.eq(labels.unsqueeze(dim=1), cl)
if labels.ndim == 2:
# if the labels are one-hot vectors
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
cdists = torch.where(matcher, distances.T, inf).T
winning_distances[i] = torch.min(cdists, dim=1,
keepdim=True).values.squeeze()
if labels.ndim == 2:
# Transpose to return with `batch_size` first and
# reverse the columns to fix the ordering of the classes
return torch.flip(winning_distances.T, dims=(1, ))
def wtac(distances: torch.Tensor,
labels: torch.LongTensor) -> (torch.LongTensor):
"""Winner-Takes-All-Competition.
return winning_distances.T # return with `batch_size` first
Returns the labels corresponding to the winners.
def wtac(distances, labels):
"""
winning_indices = torch.min(distances, dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels
def knnc(distances, labels, k=1):
def knnc(distances: torch.Tensor,
labels: torch.LongTensor,
k: int = 1) -> (torch.LongTensor):
"""K-Nearest-Neighbors-Competition.
Returns the labels corresponding to the winners.
"""
winning_indices = torch.topk(-distances, k=k, dim=1).indices
# winning_labels = torch.mode(labels[winning_indices].squeeze(),
# dim=1).values
winning_labels = torch.mode(labels[winning_indices], dim=1).values
return winning_labels

View File

@@ -57,3 +57,38 @@ def lvq21_loss(distances, target_labels, prototype_labels):
mu = dp - dm
return mu
# Probabilistic
def _get_class_probabilities(probabilities, targets, prototype_labels):
# Create Label Mapping
uniques = prototype_labels.unique(sorted=True).tolist()
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
target_indices = torch.LongTensor(list(map(key_val.get, targets.tolist())))
whole = probabilities.sum(dim=1)
correct = probabilities[torch.arange(len(probabilities)), target_indices]
wrong = whole - correct
return whole, correct, wrong
def nllr_loss(probabilities, targets, prototype_labels):
"""Compute the Negative Log-Likelihood Ratio loss."""
_, correct, wrong = _get_class_probabilities(probabilities, targets,
prototype_labels)
likelihood = correct / wrong
log_likelihood = torch.log(likelihood)
return -1.0 * log_likelihood
def rslvq_loss(probabilities, targets, prototype_labels):
"""Compute the Robust Soft Learning Vector Quantization (RSLVQ) loss."""
whole, correct, _ = _get_class_probabilities(probabilities, targets,
prototype_labels)
likelihood = correct / whole
log_likelihood = torch.log(likelihood)
return -1.0 * log_likelihood

View File

@@ -0,0 +1,80 @@
"""ProtoTorch pooling functions."""
from typing import Callable
import torch
def stratify_with(values: torch.Tensor,
labels: torch.LongTensor,
fn: Callable,
fill_value: float = 0.0) -> (torch.Tensor):
"""Apply an arbitrary stratification strategy on the columns on `values`.
The outputs correspond to sorted labels.
"""
clabels = torch.unique(labels, dim=0, sorted=True)
num_classes = clabels.size()[0]
if values.size()[1] == num_classes:
# skip if stratification is trivial
return values
batch_size = values.size()[0]
winning_values = torch.zeros(num_classes, batch_size, device=labels.device)
filler = torch.full_like(values.T, fill_value=fill_value)
for i, cl in enumerate(clabels):
matcher = torch.eq(labels.unsqueeze(dim=1), cl)
if labels.ndim == 2:
# if the labels are one-hot vectors
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
cdists = torch.where(matcher, values.T, filler).T
winning_values[i] = fn(cdists)
if labels.ndim == 2:
# Transpose to return with `batch_size` first and
# reverse the columns to fix the ordering of the classes
return torch.flip(winning_values.T, dims=(1, ))
return winning_values.T # return with `batch_size` first
def stratified_sum_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise sum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.sum(x, dim=1, keepdim=True).squeeze(),
fill_value=0.0)
return winning_values
def stratified_min_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise minimum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.min(x, dim=1, keepdim=True).values.squeeze(),
fill_value=float("inf"))
return winning_values
def stratified_max_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise maximum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.max(x, dim=1, keepdim=True).values.squeeze(),
fill_value=-1.0 * float("inf"))
return winning_values
def stratified_prod_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise maximum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.prod(x, dim=1, keepdim=True).squeeze(),
fill_value=1.0)
return winning_values

View File

@@ -0,0 +1,5 @@
import torch
def gaussian(distance, variance):
return torch.exp(-(distance * distance) / (2 * variance))

View File

@@ -1,7 +1,7 @@
"""ProtoTorch modules."""
from .prototypes import Prototypes1D
__all__ = [
"Prototypes1D",
]
from .competitions import *
from .initializers import *
from .pooling import *
from .transformations import *
from .wrappers import LambdaLayer, LossLayer

View File

@@ -0,0 +1,41 @@
"""ProtoTorch Competition Modules."""
import torch
from prototorch.functions.competitions import knnc, wtac
class WTAC(torch.nn.Module):
"""Winner-Takes-All-Competition Layer.
Thin wrapper over the `wtac` function.
"""
def forward(self, distances, labels):
return wtac(distances, labels)
class LTAC(torch.nn.Module):
"""Loser-Takes-All-Competition Layer.
Thin wrapper over the `wtac` function.
"""
def forward(self, probs, labels):
return wtac(-1.0 * probs, labels)
class KNNC(torch.nn.Module):
"""K-Nearest-Neighbors-Competition.
Thin wrapper over the `knnc` function.
"""
def __init__(self, k=1, **kwargs):
super().__init__(**kwargs)
self.k = k
def forward(self, distances, labels):
return knnc(distances, labels, k=self.k)
def extra_repr(self):
return f"k: {self.k}"

View File

@@ -0,0 +1,61 @@
"""ProtoTroch Module Initializers."""
import torch
# Transformations
class MatrixInitializer(object):
def __init__(self, *args, **kwargs):
...
def generate(self, shape):
raise NotImplementedError("Subclasses should implement this!")
class ZerosInitializer(MatrixInitializer):
def generate(self, shape):
return torch.zeros(shape)
class OnesInitializer(MatrixInitializer):
def __init__(self, scale=1.0):
super().__init__()
self.scale = scale
def generate(self, shape):
return torch.ones(shape) * self.scale
class UniformInitializer(MatrixInitializer):
def __init__(self, minimum=0.0, maximum=1.0, scale=1.0):
super().__init__()
self.minimum = minimum
self.maximum = maximum
self.scale = scale
def generate(self, shape):
return torch.ones(shape).uniform_(self.minimum,
self.maximum) * self.scale
class DataAwareInitializer(MatrixInitializer):
def __init__(self, data, transform=torch.nn.Identity()):
super().__init__()
self.data = data
self.transform = transform
def __del__(self):
del self.data
class EigenVectorInitializer(DataAwareInitializer):
def generate(self, shape):
# TODO
raise NotImplementedError()
# Aliases
EV = EigenVectorInitializer
Random = RandomInitializer = UniformInitializer
Zeros = ZerosInitializer
Ones = OnesInitializer

View File

@@ -1,7 +1,6 @@
"""ProtoTorch losses."""
import torch
from prototorch.functions.activations import get_activation
from prototorch.functions.losses import glvq_loss
@@ -21,8 +20,8 @@ class GLVQLoss(torch.nn.Module):
class NeuralGasEnergy(torch.nn.Module):
def __init__(self, lm):
super().__init__()
def __init__(self, lm, **kwargs):
super().__init__(**kwargs)
self.lm = lm
def forward(self, d):
@@ -38,3 +37,22 @@ class NeuralGasEnergy(torch.nn.Module):
@staticmethod
def _nghood_fn(rankings, lm):
return torch.exp(-rankings / lm)
class GrowingNeuralGasEnergy(NeuralGasEnergy):
def __init__(self, topology_layer, **kwargs):
super().__init__(**kwargs)
self.topology_layer = topology_layer
@staticmethod
def _nghood_fn(rankings, topology):
winner = rankings[:, 0]
weights = torch.zeros_like(rankings, dtype=torch.float)
weights[torch.arange(rankings.shape[0]), winner] = 1.0
neighbours = topology.get_neighbours(winner)
weights[neighbours] = 0.1
return weights

View File

@@ -1,9 +1,10 @@
import torch
from prototorch.components import LabeledComponents, StratifiedMeanInitializer
from prototorch.functions.distances import euclidean_distance_matrix
from prototorch.functions.normalization import orthogonalization
from prototorch.modules.prototypes import Prototypes1D
from torch import nn
class GTLVQ(nn.Module):
r""" Generalized Tangent Learning Vector Quantization
@@ -81,13 +82,13 @@ class GTLVQ(nn.Module):
self.feature_dim = feature_dim
self.num_classes = num_classes
self.cls = Prototypes1D(
input_dim=feature_dim,
prototypes_per_class=prototypes_per_class,
nclasses=num_classes,
prototype_initializer="stratified_mean",
data=prototype_data,
)
cls_initializer = StratifiedMeanInitializer(prototype_data)
cls_distribution = {
"num_classes": num_classes,
"prototypes_per_class": prototypes_per_class,
}
self.cls = LabeledComponents(cls_distribution, cls_initializer)
if subspace_data is None:
raise ValueError("Init Data must be specified!")
@@ -119,12 +120,12 @@ class GTLVQ(nn.Module):
subspaces = subspace[:, :num_subspaces]
self.subspaces = nn.Parameter(subspaces, requires_grad=True)
def init_local_subspace(self, data,num_subspaces,num_protos):
data = data - torch.mean(data,dim=0)
_,_,v = torch.svd(data,some=False)
v = v[:,:num_subspaces]
subspaces = v.unsqueeze(0).repeat_interleave(num_protos,0)
self.subspaces = nn.Parameter(subspaces,requires_grad=True)
def init_local_subspace(self, data, num_subspaces, num_protos):
data = data - torch.mean(data, dim=0)
_, _, v = torch.svd(data, some=False)
v = v[:, :num_subspaces]
subspaces = v.unsqueeze(0).repeat_interleave(num_protos, 0)
self.subspaces = nn.Parameter(subspaces, requires_grad=True)
def global_tangent_distances(self, x):
# Tangent Projection
@@ -138,22 +139,23 @@ class GTLVQ(nn.Module):
def local_tangent_distances(self, x):
# Tangent Distance
x = x.unsqueeze(1).expand(x.size(0), self.cls.prototypes.size(0),
x = x.unsqueeze(1).expand(x.size(0), self.cls.num_components,
x.size(-1))
protos = self.cls.prototypes.unsqueeze(0).expand(
x.size(0), self.cls.prototypes.size(0), x.size(-1))
protos = self.cls()[0].unsqueeze(0).expand(x.size(0),
self.cls.num_components,
x.size(-1))
projectors = torch.eye(
self.subspaces.shape[-2], device=x.device) - torch.bmm(
self.subspaces, self.subspaces.permute([0, 2, 1]))
diff = (x - protos)
diff = diff.permute([1, 0, 2])
diff = torch.bmm(diff, projectors)
diff = torch.norm(diff,2,dim=-1).T
diff = torch.norm(diff, 2, dim=-1).T
return diff
def get_parameters(self):
return {
"params": self.cls.prototypes,
"params": self.cls.components,
}, {
"params": self.subspaces
}

View File

@@ -0,0 +1,31 @@
"""ProtoTorch Pooling Modules."""
import torch
from prototorch.functions.pooling import (stratified_max_pooling,
stratified_min_pooling,
stratified_prod_pooling,
stratified_sum_pooling)
class StratifiedSumPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_sum_pooling` function."""
def forward(self, values, labels):
return stratified_sum_pooling(values, labels)
class StratifiedProdPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_prod_pooling` function."""
def forward(self, values, labels):
return stratified_prod_pooling(values, labels)
class StratifiedMinPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_min_pooling` function."""
def forward(self, values, labels):
return stratified_min_pooling(values, labels)
class StratifiedMaxPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_max_pooling` function."""
def forward(self, values, labels):
return stratified_max_pooling(values, labels)

View File

@@ -1,137 +0,0 @@
"""ProtoTorch prototype modules."""
import warnings
import torch
from prototorch.functions.initializers import get_initializer
class _Prototypes(torch.nn.Module):
"""Abstract prototypes class."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _validate_prototype_distribution(self):
if 0 in self.prototype_distribution:
warnings.warn("Are you sure about the `0` in "
"`prototype_distribution`?")
def extra_repr(self):
return f"prototypes.shape: {tuple(self.prototypes.shape)}"
def forward(self):
return self.prototypes, self.prototype_labels
class Prototypes1D(_Prototypes):
"""Create a learnable set of one-dimensional prototypes.
TODO Complete this doc-string.
"""
def __init__(
self,
prototypes_per_class=1,
prototype_initializer="ones",
prototype_distribution=None,
data=None,
dtype=torch.float32,
one_hot_labels=False,
**kwargs,
):
warnings.warn(
PendingDeprecationWarning(
"Prototypes1D will be replaced in future versions."))
# Convert tensors to python lists before processing
if prototype_distribution is not None:
if not isinstance(prototype_distribution, list):
prototype_distribution = prototype_distribution.tolist()
if data is None:
if "input_dim" not in kwargs:
raise NameError("`input_dim` required if "
"no `data` is provided.")
if prototype_distribution:
kwargs_num_classes = sum(prototype_distribution)
else:
if "num_classes" not in kwargs:
raise NameError("`prototype_distribution` required if "
"both `data` and `num_classes` are not "
"provided.")
kwargs_num_classes = kwargs.pop("num_classes")
input_dim = kwargs.pop("input_dim")
if prototype_initializer in [
"stratified_mean", "stratified_random"
]:
warnings.warn(
f"`prototype_initializer`: `{prototype_initializer}` "
"requires `data`, but `data` is not provided. "
"Using randomly generated data instead.")
x_train = torch.rand(kwargs_num_classes, input_dim)
y_train = torch.arange(kwargs_num_classes)
if one_hot_labels:
y_train = torch.eye(kwargs_num_classes)[y_train]
data = [x_train, y_train]
x_train, y_train = data
x_train = torch.as_tensor(x_train).type(dtype)
y_train = torch.as_tensor(y_train).type(torch.int)
num_classes = torch.unique(y_train, dim=-1).shape[-1]
if num_classes == 1:
warnings.warn("Are you sure about having one class only?")
if x_train.ndim != 2:
raise ValueError("`data[0].ndim != 2`.")
if y_train.ndim == 2:
if y_train.shape[1] == 1 and one_hot_labels:
raise ValueError("`one_hot_labels` is set to `True` "
"but target labels are not one-hot-encoded.")
if y_train.shape[1] != 1 and not one_hot_labels:
raise ValueError("`one_hot_labels` is set to `False` "
"but target labels in `data` "
"are one-hot-encoded.")
if y_train.ndim == 1 and one_hot_labels:
raise ValueError("`one_hot_labels` is set to `True` "
"but target labels are not one-hot-encoded.")
# Verify input dimension if `input_dim` is provided
if "input_dim" in kwargs:
input_dim = kwargs.pop("input_dim")
if input_dim != x_train.shape[1]:
raise ValueError(f"Provided `input_dim`={input_dim} does "
"not match data dimension "
f"`data[0].shape[1]`={x_train.shape[1]}")
# Verify the number of classes if `num_classes` is provided
if "num_classes" in kwargs:
kwargs_num_classes = kwargs.pop("num_classes")
if kwargs_num_classes != num_classes:
raise ValueError(
f"Provided `num_classes={kwargs_num_classes}` does "
"not match data labels "
"`torch.unique(data[1]).shape[0]`"
f"={num_classes}")
super().__init__(**kwargs)
if not prototype_distribution:
prototype_distribution = [prototypes_per_class] * num_classes
with torch.no_grad():
self.prototype_distribution = torch.tensor(prototype_distribution)
self._validate_prototype_distribution()
self.prototype_initializer = get_initializer(prototype_initializer)
prototypes, prototype_labels = self.prototype_initializer(
x_train,
y_train,
prototype_distribution=self.prototype_distribution,
one_hot=one_hot_labels,
)
# Register module parameters
self.prototypes = torch.nn.Parameter(prototypes)
self.prototype_labels = torch.nn.Parameter(
prototype_labels.type(dtype)).requires_grad_(False)

View File

@@ -0,0 +1,49 @@
"""ProtoTorch Transformation Layers."""
import torch
from torch.nn.parameter import Parameter
from .initializers import MatrixInitializer
def _precheck_initializer(initializer):
if not isinstance(initializer, MatrixInitializer):
emsg = f"`initializer` has to be some subtype of " \
f"{MatrixInitializer}. " \
f"You have provided: {initializer=} instead."
raise TypeError(emsg)
class Omega(torch.nn.Module):
"""The Omega mapping used in GMLVQ."""
def __init__(self,
num_replicas=1,
input_dim=None,
latent_dim=None,
initializer=None,
*,
initialized_weights=None):
super().__init__()
if initialized_weights is not None:
self._register_weights(initialized_weights)
else:
if num_replicas == 1:
shape = (input_dim, latent_dim)
else:
shape = (num_replicas, input_dim, latent_dim)
self._initialize_weights(shape, initializer)
def _register_weights(self, weights):
self.register_parameter("_omega", Parameter(weights))
def _initialize_weights(self, shape, initializer):
_precheck_initializer(initializer)
_omega = initializer.generate(shape)
self._register_weights(_omega)
def forward(self):
return self._omega
def extra_repr(self):
return f"(omega): (shape: {tuple(self._omega.shape)})"

View File

@@ -0,0 +1,36 @@
"""ProtoTorch Wrappers."""
import torch
class LambdaLayer(torch.nn.Module):
def __init__(self, fn, name=None):
super().__init__()
self.fn = fn
self.name = name or fn.__name__ # lambda fns get <lambda>
def forward(self, *args, **kwargs):
return self.fn(*args, **kwargs)
def extra_repr(self):
return self.name
class LossLayer(torch.nn.modules.loss._Loss):
def __init__(self,
fn,
name=None,
size_average=None,
reduce=None,
reduction: str = "mean") -> None:
super().__init__(size_average=size_average,
reduce=reduce,
reduction=reduction)
self.fn = fn
self.name = name or fn.__name__ # lambda fns get <lambda>
def forward(self, *args, **kwargs):
return self.fn(*args, **kwargs)
def extra_repr(self):
return self.name

View File

@@ -1,243 +0,0 @@
"""Utilities that provide various small functionalities."""
import os
import pickle
import sys
from time import time
import matplotlib.pyplot as plt
import numpy as np
def progressbar(title, value, end, bar_width=20):
percent = float(value) / end
arrow = "=" * int(round(percent * bar_width) - 1) + ">"
spaces = "." * (bar_width - len(arrow))
sys.stdout.write("\r{}: [{}] {}%".format(title, arrow + spaces,
int(round(percent * 100))))
sys.stdout.flush()
if percent == 1.0:
print()
def prettify_string(inputs, start="", sep=" ", end="\n"):
outputs = start + " ".join(inputs.split()) + end
return outputs
def pretty_print(inputs):
print(prettify_string(inputs))
def writelog(self, *logs, logdir="./logs", logfile="run.txt"):
f = os.path.join(logdir, logfile)
with open(f, "a+") as fh:
for log in logs:
fh.write(log)
fh.write("\n")
def start_tensorboard(self, logdir="./logs"):
cmd = f"tensorboard --logdir={logdir} --port=6006"
os.system(cmd)
def make_directory(save_dir):
if not os.path.exists(save_dir):
print(f"Making directory {save_dir}.")
os.mkdir(save_dir)
def make_gif(filenames, duration, output_file=None):
try:
import imageio
except ModuleNotFoundError as e:
print("Please install Protoflow with [other] extra requirements.")
raise (e)
images = list()
for filename in filenames:
images.append(imageio.imread(filename))
if not output_file:
output_file = f"makegif.gif"
if images:
imageio.mimwrite(output_file, images, duration=duration)
def gif_from_dir(directory,
duration,
prefix="",
output_file=None,
verbose=True):
images = os.listdir(directory)
if verbose:
print(f"Making gif from {len(images)} images under {directory}.")
filenames = list()
# Sort images
images = sorted(
images,
key=lambda img: int(os.path.splitext(img)[0].replace(prefix, "")))
for image in images:
fname = os.path.join(directory, image)
filenames.append(fname)
if not output_file:
output_file = os.path.join(directory, "makegif.gif")
make_gif(filenames=filenames, duration=duration, output_file=output_file)
def accuracy_score(y_true, y_pred):
accuracy = np.sum(y_true == y_pred)
normalized_acc = accuracy / float(len(y_true))
return normalized_acc
def predict_and_score(clf,
x_test,
y_test,
verbose=False,
title="Test accuracy"):
y_pred = clf.predict(x_test)
accuracy = np.sum(y_test == y_pred)
normalized_acc = accuracy / float(len(y_test))
if verbose:
print(f"{title}: {normalized_acc * 100:06.04f}%")
return normalized_acc
def remove_nan_rows(arr):
"""Remove all rows with `nan` values in `arr`."""
mask = np.isnan(arr).any(axis=1)
return arr[~mask]
def remove_nan_cols(arr):
"""Remove all columns with `nan` values in `arr`."""
mask = np.isnan(arr).any(axis=0)
return arr[~mask]
def replace_in(arr, replacement_dict, inplace=False):
"""Replace the keys found in `arr` with the values from
the `replacement_dict`.
"""
if inplace:
new_arr = arr
else:
import copy
new_arr = copy.deepcopy(arr)
for k, v in replacement_dict.items():
new_arr[arr == k] = v
return new_arr
def train_test_split(data, train=0.7, val=0.15, shuffle=None, return_xy=False):
"""Split a classification dataset in such a way so as to
preserve the class distribution in subsamples of the dataset.
"""
if train + val > 1.0:
raise ValueError("Invalid split values for train and val.")
Y = data[:, -1]
labels = set(Y)
hist = dict()
for l in labels:
data_l = data[Y == l]
nl = len(data_l)
nl_train = int(nl * train)
nl_val = int(nl * val)
nl_test = nl - (nl_train + nl_val)
hist[l] = (nl_train, nl_val, nl_test)
train_data = list()
val_data = list()
test_data = list()
for l, (nl_train, nl_val, nl_test) in hist.items():
data_l = data[Y == l]
if shuffle:
np.random.shuffle(data_l)
train_l = data_l[:nl_train]
val_l = data_l[nl_train:nl_train + nl_val]
test_l = data_l[nl_train + nl_val:nl_train + nl_val + nl_test]
train_data.append(train_l)
val_data.append(val_l)
test_data.append(test_l)
def _squash(data_list):
data = np.array(data_list[0])
for item in data_list[1:]:
data = np.vstack((data, np.array(item)))
return data
train_data = _squash(train_data)
if val_data:
val_data = _squash(val_data)
if test_data:
test_data = _squash(test_data)
if return_xy:
x_train = train_data[:, :-1]
y_train = train_data[:, -1]
x_val = val_data[:, :-1]
y_val = val_data[:, -1]
x_test = test_data[:, :-1]
y_test = test_data[:, -1]
return (x_train, y_train), (x_val, y_val), (x_test, y_test)
return train_data, val_data, test_data
def class_histogram(data, title="Untitled"):
plt.figure(title)
plt.clf()
plt.title(title)
dist, counts = np.unique(data[:, -1], return_counts=True)
plt.bar(dist, counts)
plt.xticks(dist)
print("Call matplotlib.pyplot.show() to see the plot.")
def ntimer(n=10):
"""Wraps a function which wraps another function to time it."""
if n < 1:
raise (Exception(f"Invalid n = {n} given."))
def timer(func):
"""Wraps `func` with a timer and returns the wrapped `func`."""
def wrapper(*args, **kwargs):
rv = None
before = time()
for _ in range(n):
rv = func(*args, **kwargs)
after = time()
elapsed = after - before
print(f"Elapsed: {elapsed*1e3:02.02f} ms")
return rv
return wrapper
return timer
def memoize(verbose=True):
"""Wraps a function which wraps another function that memoizes."""
def memoizer(func):
"""Memoize (cache) return values of `func`.
Wraps `func` and returns the wrapped `func` so that `func`
is executed when the results are not available in the cache.
"""
cache = {}
def wrapper(*args, **kwargs):
t = (pickle.dumps(args), pickle.dumps(kwargs))
if t not in cache:
if verbose:
print(f"Adding NEW rv {func.__name__}{args}{kwargs} "
"to cache.")
cache[t] = func(*args, **kwargs)
else:
if verbose:
print(f"Using OLD rv {func.__name__}{args}{kwargs} "
"from cache.")
return cache[t]
return wrapper
return memoizer

View File

@@ -43,7 +43,7 @@ ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
setup(
name="prototorch",
version="0.4.5",
version="0.5.0",
description="Highly extensible, GPU-supported "
"Learning Vector Quantization (LVQ) toolbox "
"built using PyTorch and its nn API.",

View File

@@ -5,7 +5,7 @@ import unittest
import numpy as np
import torch
from prototorch.functions import (activations, competitions, distances,
initializers, losses)
initializers, losses, pooling)
class TestActivations(unittest.TestCase):
@@ -104,10 +104,28 @@ class TestCompetitions(unittest.TestCase):
decimal=5)
self.assertIsNone(mismatch)
def test_knnc_k1(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.knnc(d, labels, k=1)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
pass
class TestPooling(unittest.TestCase):
def setUp(self):
pass
def test_stratified_min(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
actual = competitions.stratified_min(d, labels)
actual = pooling.stratified_min_pooling(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
@@ -118,28 +136,70 @@ class TestCompetitions(unittest.TestCase):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
labels = torch.eye(3)[labels]
actual = competitions.stratified_min(d, labels)
actual = pooling.stratified_min_pooling(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_min_simple(self):
def test_stratified_min_trivial(self):
d = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0, 1]])
labels = torch.tensor([0, 1, 2])
actual = competitions.stratified_min(d, labels)
actual = pooling.stratified_min_pooling(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_knnc_k1(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.knnc(d, labels, k=1)
desired = torch.tensor([2, 0])
def test_stratified_max(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 3, 2, 0])
actual = pooling.stratified_max_pooling(d, labels)
desired = torch.tensor([[9.0, 3.0, 2.0], [9.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_max_one_hot(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 2, 1, 0])
labels = torch.nn.functional.one_hot(labels, num_classes=3)
actual = pooling.stratified_max_pooling(d, labels)
desired = torch.tensor([[9.0, 3.0, 2.0], [9.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_sum(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.LongTensor([0, 0, 1, 2])
actual = pooling.stratified_sum_pooling(d, labels)
desired = torch.tensor([[1.0, 2.0, 3.0], [17.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_sum_one_hot(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
labels = torch.eye(3)[labels]
actual = pooling.stratified_sum_pooling(d, labels)
desired = torch.tensor([[1.0, 2.0, 3.0], [17.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_prod(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 3, 2, 0])
actual = pooling.stratified_prod_pooling(d, labels)
desired = torch.tensor([[0.0, 3.0, 2.0], [504.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)

View File

@@ -1,297 +0,0 @@
"""ProtoTorch modules test suite."""
import unittest
import numpy as np
import torch
from prototorch.modules import losses, prototypes
class TestPrototypes(unittest.TestCase):
def setUp(self):
self.x = torch.tensor(
[[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]],
dtype=torch.float32)
self.y = torch.tensor([0, 0, 1, 1])
self.gen = torch.manual_seed(42)
def test_prototypes1d_init_without_input_dim(self):
with self.assertRaises(NameError):
_ = prototypes.Prototypes1D(num_classes=2)
def test_prototypes1d_init_without_num_classes(self):
with self.assertRaises(NameError):
_ = prototypes.Prototypes1D(input_dim=1)
def test_prototypes1d_init_with_num_classes_1(self):
with self.assertWarns(UserWarning):
_ = prototypes.Prototypes1D(num_classes=1, input_dim=1)
def test_prototypes1d_init_without_pdist(self):
p1 = prototypes.Prototypes1D(
input_dim=6,
num_classes=2,
prototypes_per_class=4,
prototype_initializer="ones",
)
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.ones(8, 6)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_init_without_data(self):
pdist = [2, 2]
p1 = prototypes.Prototypes1D(input_dim=3,
prototype_distribution=pdist,
prototype_initializer="zeros")
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(4, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_proto_init_without_data(self):
with self.assertWarns(UserWarning):
_ = prototypes.Prototypes1D(
input_dim=3,
num_classes=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=None,
)
def test_prototypes1d_init_torch_pdist(self):
pdist = torch.tensor([2, 2])
p1 = prototypes.Prototypes1D(input_dim=3,
prototype_distribution=pdist,
prototype_initializer="zeros")
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(4, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_init_without_inputdim_with_data(self):
_ = prototypes.Prototypes1D(
num_classes=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=[[[1.0], [0.0]], [1, 0]],
)
def test_prototypes1d_init_with_int_data(self):
_ = prototypes.Prototypes1D(
num_classes=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=[[[1], [0]], [1, 0]],
)
def test_prototypes1d_init_one_hot_without_data(self):
_ = prototypes.Prototypes1D(
input_dim=1,
num_classes=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=None,
one_hot_labels=True,
)
def test_prototypes1d_init_one_hot_labels_false(self):
"""Test if ValueError is raised when `one_hot_labels` is set to `False`
but the provided `data` has one-hot encoded labels.
"""
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(
input_dim=1,
num_classes=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=([[0.0], [1.0]], [[0, 1], [1, 0]]),
one_hot_labels=False,
)
def test_prototypes1d_init_1d_y_data_one_hot_labels_true(self):
"""Test if ValueError is raised when `one_hot_labels` is set to `True`
but the provided `data` does not contain one-hot encoded labels.
"""
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(
input_dim=1,
num_classes=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=([[0.0], [1.0]], [0, 1]),
one_hot_labels=True,
)
def test_prototypes1d_init_one_hot_labels_true(self):
"""Test if ValueError is raised when `one_hot_labels` is set to `True`
but the provided `data` contains 2D targets but
does not contain one-hot encoded labels.
"""
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(
input_dim=1,
num_classes=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=([[0.0], [1.0]], [[0], [1]]),
one_hot_labels=True,
)
def test_prototypes1d_init_with_int_dtype(self):
with self.assertRaises(RuntimeError):
_ = prototypes.Prototypes1D(
num_classes=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=[[[1], [0]], [1, 0]],
dtype=torch.int32,
)
def test_prototypes1d_inputndim_with_data(self):
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(input_dim=1,
num_classes=1,
prototypes_per_class=1,
data=[[1.0], [1]])
def test_prototypes1d_inputdim_with_data(self):
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(
input_dim=2,
num_classes=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=[[[1.0], [0.0]], [1, 0]],
)
def test_prototypes1d_num_classes_with_data(self):
"""Test ValueError raise if provided `num_classes` is not the same
as the one computed from the provided `data`.
"""
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(
input_dim=1,
num_classes=1,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=[[[1.0], [2.0]], [1, 2]],
)
def test_prototypes1d_init_with_ppc(self):
p1 = prototypes.Prototypes1D(data=[self.x, self.y],
prototypes_per_class=2,
prototype_initializer="zeros")
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(4, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_init_with_pdist(self):
p1 = prototypes.Prototypes1D(
data=[self.x, self.y],
prototype_distribution=[6, 9],
prototype_initializer="zeros",
)
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(15, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_func_initializer(self):
def my_initializer(*args, **kwargs):
return torch.full((2, 99), 99.0), torch.tensor([0, 1])
p1 = prototypes.Prototypes1D(
input_dim=99,
num_classes=2,
prototypes_per_class=1,
prototype_initializer=my_initializer,
)
protos = p1.prototypes
actual = protos.detach().numpy()
desired = 99 * torch.ones(2, 99)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_forward(self):
p1 = prototypes.Prototypes1D(data=[self.x, self.y])
protos, _ = p1()
actual = protos.detach().numpy()
desired = torch.ones(2, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_dist_validate(self):
p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0])
with self.assertWarns(UserWarning):
_ = p1._validate_prototype_distribution()
def test_prototypes1d_validate_extra_repr_not_empty(self):
p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0])
rep = p1.extra_repr()
self.assertNotEqual(rep, "")
def tearDown(self):
del self.x, self.y, self.gen
_ = torch.seed()
class TestLosses(unittest.TestCase):
def setUp(self):
pass
def test_glvqloss_init(self):
_ = losses.GLVQLoss(0, "swish_beta", beta=20)
def test_glvqloss_forward_1ppc(self):
criterion = losses.GLVQLoss(margin=0,
squashing="sigmoid_beta",
beta=100)
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([0, 1])
targets = torch.ones(100)
outputs = [d, labels]
loss = criterion(outputs, targets)
loss_value = loss.item()
self.assertAlmostEqual(loss_value, 0.0)
def test_glvqloss_forward_2ppc(self):
criterion = losses.GLVQLoss(margin=0,
squashing="sigmoid_beta",
beta=100)
d = torch.stack([
torch.ones(100),
torch.ones(100),
torch.zeros(100),
torch.ones(100)
],
dim=1)
labels = torch.tensor([0, 0, 1, 1])
targets = torch.ones(100)
outputs = [d, labels]
loss = criterion(outputs, targets)
loss_value = loss.item()
self.assertAlmostEqual(loss_value, 0.0)
def tearDown(self):
pass