18 Commits

Author SHA1 Message Date
blackfly
438a5b9360 Bump version: 0.1.0-rc0 → 0.1.1-dev0 2020-04-08 23:00:34 +02:00
blackfly
f98f3d095e Update .travis.yml to cache artifacts from test scripts 2020-04-08 22:47:31 +02:00
blackfly
21b0279839 Add test cases 2020-04-08 22:47:08 +02:00
blackfly
b19cbcb76a Fix zero-distance bug in glvq_loss 2020-04-08 22:46:08 +02:00
blackfly
7d5ab81dbf Clean up prototorch/functions/distances.py 2020-04-08 22:44:02 +02:00
blackfly
bde408a80e Prepare activation and competition functions for TorchScript 2020-04-08 22:42:56 +02:00
blackfly
900955d67a Rename tests github action 2020-04-08 22:34:26 +02:00
blackfly
3757c937b3 Bump version: 0.1.0-dev0 → 0.1.0-rc0 2020-04-06 21:49:52 +02:00
blackfly
38f637aaeb Add build status batch from travis 2020-04-06 21:38:47 +02:00
blackfly
6ddfe48a95 Use bionic distribution instead of trusty
Downloading archive: ...binaries/ubuntu/14.04/x86_64/python-3.8.tar.bz2
$ curl -sSf --retry 5 -o python-3.8.tar.bz2 ${archive_url}
curl: (22) The requested URL returned error: 404 Not Found
Unable to download 3.8 archive. The archive may not exist.
Please consider a different version.
2020-04-06 21:21:14 +02:00
blackfly
bf0e694321 Add missing torch dependency in travis.yml 2020-04-06 21:16:43 +02:00
blackfly
e2c9848120 Update tox.ini to use coverage 2020-04-06 21:05:57 +02:00
blackfly
dc60b7e5b5 Add .travis.yml 2020-04-06 21:05:20 +02:00
blackfly
c21913fdd4 Add tests/__init__.py
Adding the __init__.py file makes it possible to run `coverage run -m pytest`
from the project root.
2020-04-06 21:01:50 +02:00
blackfly
59e31f94ab Add more version badges and bibtex section to README.md 2020-04-06 19:59:52 +02:00
blackfly
cddefa9b0d Add RELEASE.md 2020-04-06 18:52:12 +02:00
blackfly
26d71fdd60 Add version badges to README.md 2020-04-06 18:48:02 +02:00
blackfly
ced8f532dd Update MANIFEST.in to include codecov and test scripts 2020-04-06 18:32:06 +02:00
17 changed files with 219 additions and 133 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.1.0-dev0
current_version = 0.1.1-dev0
commit = True
tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)(\-(?P<release>[a-z]+)(?P<build>\d+))?

View File

@@ -1,7 +1,7 @@
# This workflow will install Python dependencies, run tests and lint with a single version of Python
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Tests
name: tests
on:
push:

19
.travis.yml Normal file
View File

@@ -0,0 +1,19 @@
dist: bionic
sudo: false
language: python
python: 3.8
cache:
directories:
- ./tests/artifacts
install:
- pip install . --progress-bar off
- pip install codecov
- pip install pytest
script:
- coverage run -m pytest
# Push the results to codecov
after_success:
- codecov

View File

@@ -1,9 +1,11 @@
include .bumpversion.cfg
include LICENSE
include tox.ini
include *.yml
recursive-include docs *.bat
recursive-include docs *.png
recursive-include docs *.py
recursive-include docs *.rst
recursive-include docs Makefile
recursive-include examples *.py
recursive-include tests *.py

View File

@@ -3,8 +3,13 @@
ProtoTorch is a PyTorch-based Python toolbox for bleeding-edge research in
prototype-based machine learning algorithms.
![Tests](https://github.com/si-cim/prototorch/workflows/Tests/badge.svg)
[![Build Status](https://travis-ci.org/si-cim/prototorch.svg?branch=master)](https://travis-ci.org/si-cim/prototorch)
[![GitHub version](https://badge.fury.io/gh/si-cim%2Fprototorch.svg)](https://badge.fury.io/gh/si-cim%2Fprototorch)
[![PyPI version](https://badge.fury.io/py/prototorch.svg)](https://badge.fury.io/py/prototorch)
![tests](https://github.com/si-cim/prototorch/workflows/tests/badge.svg)
[![codecov](https://codecov.io/gh/si-cim/prototorch/branch/master/graph/badge.svg)](https://codecov.io/gh/si-cim/prototorch)
[![Downloads](https://pepy.tech/badge/prototorch)](https://pepy.tech/project/prototorch)
[![GitHub license](https://img.shields.io/github/license/si-cim/prototorch)](https://github.com/si-cim/prototorch/blob/master/LICENSE)
## Description
@@ -47,3 +52,16 @@ API, with more algorithms and techniques coming soon. If you would simply like
to be able to use those algorithms to train large ML models on a GPU, ProtoTorch
lets you do this without requiring a black-belt in high-performance Tensor
computation.
## Bibtex
If you would like to cite the package, please use this:
```bibtex
@misc{Ravichandran2020,
author = {Ravichandran, J},
title = {ProtoTorch},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/si-cim/prototorch}}
}

3
RELEASE.md Normal file
View File

@@ -0,0 +1,3 @@
# Release 0.1.0-dev0
Initial public release of ProtoTorch.

View File

@@ -1 +1 @@
__version__ = '0.1.0-dev0'
__version__ = '0.1.1-dev0'

View File

@@ -5,30 +5,36 @@ import torch
ACTIVATIONS = dict()
def register_activation(func):
ACTIVATIONS[func.__name__] = func
return func
# def register_activation(scriptf):
# ACTIVATIONS[scriptf.name] = scriptf
# return scriptf
def register_activation(f):
ACTIVATIONS[f.__name__] = f
return f
@register_activation
def identity(input, **kwargs):
# @torch.jit.script
def identity(input, beta=torch.tensor([0])):
""":math:`f(x) = x`"""
return input
@register_activation
def sigmoid_beta(input, beta=10):
# @torch.jit.script
def sigmoid_beta(input, beta=torch.tensor([10])):
""":math:`f(x) = \\frac{1}{1 + e^{-\\beta x}}`
Keyword Arguments:
beta (float): Parameter :math:`\\beta`
"""
out = torch.reciprocal(1.0 + torch.exp(-beta * input))
out = torch.reciprocal(1.0 + torch.exp(-int(beta.item()) * input))
return out
@register_activation
def swish_beta(input, beta=10):
# @torch.jit.script
def swish_beta(input, beta=torch.tensor([10])):
""":math:`f(x) = \\frac{x}{1 + e^{-\\beta x}}`
Keyword Arguments:

View File

@@ -3,13 +3,15 @@
import torch
# @torch.jit.script
def wtac(distances, labels):
winning_indices = torch.min(distances, dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels
# @torch.jit.script
def knnc(distances, labels, k):
winning_indices = torch.topk(-distances, k=k, dim=1).indices
winning_indices = torch.topk(-distances, k=k.item(), dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels

View File

@@ -33,13 +33,6 @@ def lpnorm_distance(x, y, p):
Expected dimension of x is 2.
Expected dimension of y is 2.
"""
# # DEPRECATED in favor of torch.cdist
# expanded_x = x.unsqueeze(dim=1)
# batchwise_difference = y - expanded_x
# differences_raised = torch.pow(batchwise_difference, p)
# distances_raised = torch.sum(differences_raised, axis=2)
# distances = torch.pow(distances_raised, 1.0 / p)
# return distances
distances = torch.cdist(x, y, p=p)
return distances

View File

@@ -12,12 +12,9 @@ def glvq_loss(distances, target_labels, prototype_labels):
matcher = torch.eq(torch.sum(matcher, dim=-1), nclasses)
not_matcher = torch.bitwise_not(matcher)
dplus_criterion = distances * matcher > 0.0
dminus_criterion = distances * not_matcher > 0.0
inf = torch.full_like(distances, fill_value=float('inf'))
distances_to_wpluses = torch.where(dplus_criterion, distances, inf)
distances_to_wminuses = torch.where(dminus_criterion, distances, inf)
distances_to_wpluses = torch.where(matcher, distances, inf)
distances_to_wminuses = torch.where(not_matcher, distances, inf)
dpluses = torch.min(distances_to_wpluses, dim=1, keepdim=True).values
dminuses = torch.min(distances_to_wminuses, dim=1, keepdim=True).values

View File

@@ -12,7 +12,7 @@ class GLVQLoss(torch.nn.Module):
super().__init__(**kwargs)
self.margin = margin
self.squashing = get_activation(squashing)
self.beta = beta
self.beta = torch.tensor(beta)
def forward(self, outputs, targets):
distances, plabels = outputs

View File

@@ -10,7 +10,7 @@ with open('README.md', 'r') as fh:
long_description = fh.read()
setup(name='prototorch',
version='0.1.0-dev0',
version='0.1.1-dev0',
description='Highly extensible, GPU-supported '
'Learning Vector Quantization (LVQ) toolbox '
'built using PyTorch and its nn API.',

0
tests/__init__.py Normal file
View File

View File

@@ -6,7 +6,107 @@ import numpy as np
import torch
from prototorch.functions import (activations, competitions, distances,
initializers)
initializers, losses)
class TestActivations(unittest.TestCase):
def setUp(self):
self.flist = ['identity', 'sigmoid_beta', 'swish_beta']
self.x = torch.randn(1024, 1)
def test_registry(self):
self.assertIsNotNone(activations.ACTIVATIONS)
def test_funcname_deserialization(self):
for funcname in self.flist:
f = activations.get_activation(funcname)
iscallable = callable(f)
self.assertTrue(iscallable)
# def test_torch_script(self):
# for funcname in self.flist:
# f = activations.get_activation(funcname)
# self.assertIsInstance(f, torch.jit.ScriptFunction)
def test_callable_deserialization(self):
def dummy(x, **kwargs):
return x
for f in [dummy, lambda x: x]:
f = activations.get_activation(f)
iscallable = callable(f)
self.assertTrue(iscallable)
self.assertEqual(1, f(1))
def test_unknown_deserialization(self):
for funcname in ['blubb', 'foobar']:
with self.assertRaises(NameError):
_ = activations.get_activation(funcname)
def test_identity(self):
actual = activations.identity(self.x)
desired = self.x
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_sigmoid_beta1(self):
actual = activations.sigmoid_beta(self.x, beta=torch.tensor(1))
desired = torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_swish_beta1(self):
actual = activations.swish_beta(self.x, beta=torch.tensor(1))
desired = self.x * torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x
class TestCompetitions(unittest.TestCase):
def setUp(self):
pass
def test_wtac(self):
d = torch.tensor([[2., 3., 1.99, 3.01], [2., 3., 2.01, 3.]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.wtac(d, labels)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_wtac_one_hot(self):
d = torch.tensor([[1.99, 3.01], [3., 2.01]])
labels = torch.tensor([[0, 1], [1, 0]])
actual = competitions.wtac(d, labels)
desired = torch.tensor([[0, 1], [1, 0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_knnc_k1(self):
d = torch.tensor([[2., 3., 1.99, 3.01], [2., 3., 2.01, 3.]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.knnc(d, labels, k=torch.tensor([1]))
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
pass
class TestDistances(unittest.TestCase):
@@ -167,103 +267,12 @@ class TestDistances(unittest.TestCase):
del self.x, self.y
class TestActivations(unittest.TestCase):
def setUp(self):
self.x = torch.randn(1024, 1)
def test_registry(self):
self.assertIsNotNone(activations.ACTIVATIONS)
def test_funcname_deserialization(self):
flist = ['identity', 'sigmoid_beta', 'swish_beta']
for funcname in flist:
f = activations.get_activation(funcname)
iscallable = callable(f)
self.assertTrue(iscallable)
def test_callable_deserialization(self):
def dummy(x, **kwargs):
return x
for f in [dummy, lambda x: x]:
f = activations.get_activation(f)
iscallable = callable(f)
self.assertTrue(iscallable)
self.assertEqual(1, f(1))
def test_unknown_deserialization(self):
for funcname in ['blubb', 'foobar']:
with self.assertRaises(NameError):
_ = activations.get_activation(funcname)
def test_identity(self):
actual = activations.identity(self.x)
desired = self.x
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_sigmoid_beta1(self):
actual = activations.sigmoid_beta(self.x, beta=1)
desired = torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_swish_beta1(self):
actual = activations.swish_beta(self.x, beta=1)
desired = self.x * torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x
class TestCompetitions(unittest.TestCase):
def setUp(self):
pass
def test_wtac(self):
d = torch.tensor([[2., 3., 1.99, 3.01], [2., 3., 2.01, 3.]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.wtac(d, labels)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_wtac_one_hot(self):
d = torch.tensor([[1.99, 3.01], [3., 2.01]])
labels = torch.tensor([[0, 1], [1, 0]])
actual = competitions.wtac(d, labels)
desired = torch.tensor([[0, 1], [1, 0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_knnc_k1(self):
d = torch.tensor([[2., 3., 1.99, 3.01], [2., 3., 2.01, 3.]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.knnc(d, labels, k=1)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
pass
class TestInitializers(unittest.TestCase):
def setUp(self):
self.flist = [
'zeros', 'ones', 'rand', 'randn', 'stratified_mean',
'stratified_random'
]
self.x = torch.tensor(
[[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]],
dtype=torch.float32)
@@ -274,11 +283,7 @@ class TestInitializers(unittest.TestCase):
self.assertIsNotNone(initializers.INITIALIZERS)
def test_funcname_deserialization(self):
flist = [
'zeros', 'ones', 'rand', 'randn', 'stratified_mean',
'stratified_random'
]
for funcname in flist:
for funcname in self.flist:
f = initializers.get_initializer(funcname)
iscallable = callable(f)
self.assertTrue(iscallable)
@@ -385,3 +390,32 @@ class TestInitializers(unittest.TestCase):
def tearDown(self):
del self.x, self.y, self.gen
_ = torch.seed()
class TestLosses(unittest.TestCase):
def setUp(self):
pass
def test_glvq_loss_int_labels(self):
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([0, 1])
targets = torch.ones(100)
batch_loss = losses.glvq_loss(distances=d,
target_labels=targets,
prototype_labels=labels)
loss_value = torch.sum(batch_loss, dim=0)
self.assertEqual(loss_value, -100)
def test_glvq_loss_one_hot_labels(self):
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([[0, 1], [1, 0]])
wl = torch.tensor([1, 0])
targets = torch.stack([wl for _ in range(100)], dim=0)
batch_loss = losses.glvq_loss(distances=d,
target_labels=targets,
prototype_labels=labels)
loss_value = torch.sum(batch_loss, dim=0)
self.assertEqual(loss_value, -100)
def tearDown(self):
pass

View File

@@ -123,7 +123,19 @@ class TestLosses(unittest.TestCase):
pass
def test_glvqloss_init(self):
_ = losses.GLVQLoss()
_ = losses.GLVQLoss(0, 'swish_beta', beta=20)
def test_glvqloss_forward(self):
criterion = losses.GLVQLoss(margin=0,
squashing='sigmoid_beta',
beta=100)
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([0, 1])
targets = torch.ones(100)
outputs = [d, labels]
loss = criterion(outputs, targets)
loss_value = loss.item()
self.assertAlmostEqual(loss_value, 0.0)
def tearDown(self):
pass

10
tox.ini
View File

@@ -4,12 +4,12 @@
# and then run "tox" from this directory.
[tox]
envlist = py36
envlist = py36,py37,py38
[testenv]
deps =
numpy
unittest-xml-reporting
pytest
coverage
commands =
python -m xmlrunner -o reports
pip install -e .
coverage run -m pytest