Compare commits

..

No commits in common. "master" and "v0.1.0-dev0" have entirely different histories.

63 changed files with 1095 additions and 4351 deletions

View File

@ -1,13 +1,21 @@
[bumpversion]
current_version = 0.7.6
current_version = 0.1.0-dev0
commit = True
tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
serialize = {major}.{minor}.{patch}
message = build: bump version {current_version} → {new_version}
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)(\-(?P<release>[a-z]+)(?P<build>\d+))?
serialize =
{major}.{minor}.{patch}-{release}{build}
{major}.{minor}.{patch}
[bumpversion:part:release]
optional_value = prod
first_value = dev
values =
dev
rc
prod
[bumpversion:file:setup.py]
[bumpversion:file:./prototorch/__init__.py]
[bumpversion:file:./docs/source/conf.py]

2
.codecov.yml Normal file
View File

@ -0,0 +1,2 @@
comment:
require_changes: yes

View File

@ -1,38 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**Steps to reproduce the behavior**
1. ...
2. Run script '...' or this snippet:
```python
import prototorch as pt
...
```
3. See errors
**Expected behavior**
A clear and concise description of what you expected to happen.
**Observed behavior**
A clear and concise description of what actually happened.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**System and version information**
- OS: [e.g. Ubuntu 20.10]
- ProtoTorch Version: [e.g. 0.4.0]
- Python Version: [e.g. 3.9.5]
**Additional context**
Add any other context about the problem here.

View File

@ -1,20 +0,0 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

View File

@ -1,75 +1,37 @@
# This workflow will install Python dependencies, run tests and lint with a single version of Python
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: tests
name: Tests
on:
push:
branches: [ master, dev ]
pull_request:
branches: [master]
branches: [ master ]
jobs:
style:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.11
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- uses: pre-commit/action@v3.0.0
compatibility:
needs: style
strategy:
fail-fast: false
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
os: [ubuntu-latest, windows-latest]
exclude:
- os: windows-latest
python-version: "3.8"
- os: windows-latest
python-version: "3.9"
- os: windows-latest
python-version: "3.10"
build:
runs-on: ubuntu-latest
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
- uses: actions/checkout@v2
- name: Set up Python 3.8
uses: actions/setup-python@v1
with:
python-version: ${{ matrix.python-version }}
python-version: 3.8
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
pip install .
- name: Lint with flake8
run: |
pip install flake8
# stop the build if there are Python syntax errors or undefined names
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
- name: Test with pytest
run: |
pip install pytest
pytest
publish_pypi:
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
needs: compatibility
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
pip install wheel
- name: Build package
run: python setup.py sdist bdist_wheel
- name: Publish a Python distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

17
.gitignore vendored
View File

@ -129,6 +129,14 @@ dmypy.json
# End of https://www.gitignore.io/api/python
# ProtoFlow
core
checkpoint
logs/
saved_weights/
scratch*
# Created by https://www.gitignore.io/api/visualstudiocode
# Edit at https://www.gitignore.io/?templates=visualstudiocode
@ -146,13 +154,4 @@ dmypy.json
# End of https://www.gitignore.io/api/visualstudiocode
.vscode/
# Vim
*~
*.swp
*.swo
# Artifacts created by ProtoTorch
reports
artifacts
examples/_*.py
examples/_*.ipynb

View File

@ -1,53 +0,0 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
- id: check-ast
- id: check-case-conflict
- repo: https://github.com/myint/autoflake
rev: v2.1.1
hooks:
- id: autoflake
- repo: http://github.com/PyCQA/isort
rev: 5.12.0
hooks:
- id: isort
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.3.0
hooks:
- id: mypy
files: prototorch
additional_dependencies: [types-pkg_resources]
- repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.32.0
hooks:
- id: yapf
- repo: https://github.com/pre-commit/pygrep-hooks
rev: v1.10.0
hooks:
- id: python-use-type-annotations
- id: python-no-log-warn
- id: python-check-blanket-noqa
- repo: https://github.com/asottile/pyupgrade
rev: v3.7.0
hooks:
- id: pyupgrade
- repo: https://github.com/si-cim/gitlint
rev: v0.15.2-unofficial
hooks:
- id: gitlint
args: [--contrib=CT1, --ignore=B6, --msg-filename]

View File

@ -1,27 +0,0 @@
# .readthedocs.yml
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
# Required
version: 2
# Build documentation in the docs/ directory with Sphinx
sphinx:
configuration: docs/source/conf.py
fail_on_warning: true
# Build documentation with MkDocs
# mkdocs:
# configuration: mkdocs.yml
# Optionally build your docs in additional formats such as PDF and ePub
formats: all
# Optionally set the version of Python and requirements required to build your docs
python:
version: 3.9
install:
- method: pip
path: .
extra_requirements:
- all

View File

@ -1,7 +0,0 @@
{
"plugins": [
"remark-preset-lint-recommended",
["remark-lint-list-item-indent", false],
["no-emphasis-as-header", false]
]
}

View File

@ -1,7 +1,6 @@
MIT License
Copyright (c) 2020 Saxon Institute for Computational Intelligence and Machine
Learning (SICIM)
Copyright (c) 2020 si-cim
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@ -1,13 +1,9 @@
include .bumpversion.cfg
include LICENSE
include tox.ini
include *.md
include *.txt
include *.yml
recursive-include docs *.bat
recursive-include docs *.png
recursive-include docs *.py
recursive-include docs *.rst
recursive-include docs Makefile
recursive-include examples *.py
recursive-include tests *.py

View File

@ -1,75 +1,49 @@
# ProtoTorch: Prototype Learning in PyTorch
# ProtoTorch
![ProtoTorch Logo](https://prototorch.readthedocs.io/en/latest/_static/horizontal-lockup.png)
ProtoTorch is a PyTorch-based Python toolbox for bleeding-edge research in
prototype-based machine learning algorithms.
![tests](https://github.com/si-cim/prototorch/workflows/tests/badge.svg)
[![GitHub tag (latest by date)](https://img.shields.io/github/v/tag/si-cim/prototorch?color=yellow&label=version)](https://github.com/si-cim/prototorch/releases)
[![PyPI](https://img.shields.io/pypi/v/prototorch)](https://pypi.org/project/prototorch/)
[![GitHub license](https://img.shields.io/github/license/si-cim/prototorch)](https://github.com/si-cim/prototorch/blob/master/LICENSE)
*Tensorflow users, see:* [ProtoFlow](https://github.com/si-cim/protoflow)
![Tests](https://github.com/si-cim/prototorch/workflows/Tests/badge.svg)
[![codecov](https://codecov.io/gh/si-cim/prototorch/branch/master/graph/badge.svg)](https://codecov.io/gh/si-cim/prototorch)
## Description
This is a Python toolbox brewed at the Mittweida University of Applied Sciences
in Germany for bleeding-edge research in Prototype-based Machine Learning
methods and other interpretable models. The focus of ProtoTorch is ease-of-use,
extensibility and speed.
in Germany for bleeding-edge research in Learning Vector Quantization (LVQ)
and potentially other prototype-based methods. Although, there are
other (perhaps more extensive) LVQ toolboxes available out there, the focus of
ProtoTorch is ease-of-use, extensibility and speed.
Many popular prototype-based Machine Learning (ML) algorithms like K-Nearest
Neighbors (KNN), Generalized Learning Vector Quantization (GLVQ) and Generalized
Matrix Learning Vector Quantization (GMLVQ) are implemented using the "nn" API
provided by PyTorch.
## Installation
ProtoTorch can be installed using `pip`.
```bash
pip install -U prototorch
```
To also install the extras, use
```bash
pip install -U prototorch[all]
pip install prototorch
```
*Note: If you're using [ZSH](https://www.zsh.org/) (which is also the default
shell on MacOS now), the square brackets `[ ]` have to be escaped like so:
`\[\]`, making the install command `pip install -U prototorch\[all\]`.*
To install the bleeding-edge features and improvements:
```bash
```
git clone https://github.com/si-cim/prototorch.git
cd prototorch
git checkout dev
pip install -e .[all]
cd prototorch
pip install -e .
```
## Documentation
## Usage
The documentation is available at <https://www.prototorch.ml/en/latest/>. Should
that link not work try <https://prototorch.readthedocs.io/en/latest/>.
ProtoTorch is modular. It is very easy to use the modular pieces provided by
ProtoTorch, like the layers, losses, callbacks and metrics to build your own
prototype-based(instance-based) models. These pieces blend-in seamlessly with
numpy and PyTorch to allow you mix and match the modules from ProtoTorch with
other PyTorch modules.
## Contribution
This repository contains definition for [git hooks](https://githooks.com).
[Pre-commit](https://pre-commit.com) is automatically installed as development
dependency with prototorch or you can install it manually with `pip install
pre-commit`.
Please install the hooks by running:
```bash
pre-commit install
pre-commit install --hook-type commit-msg
```
before creating the first commit.
The commit will fail if the commit message does not follow the specification
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
## Bibtex
If you would like to cite the package, please use this:
```bibtex
@misc{Ravichandran2020b,
author = {Ravichandran, J},
title = {ProtoTorch},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/si-cim/prototorch}}
}
ProtoTorch comes prepackaged with many popular LVQ algorithms in a convenient
API, with more algorithms and techniques coming soon. If you would simply like
to be able to use those algorithms to train large ML models on a GPU, ProtoTorch
lets you do this without requiring a black-belt in high-performance Tensor
computation.

View File

@ -1,19 +0,0 @@
# ProtoTorch Releases
## Release 0.5.0
- Breaking: Removed deprecated `prototorch.modules.Prototypes1D`.
- Use `prototorch.components.LabeledComponents` instead.
## Release 0.2.0
- Fixes in example scripts.
## Release 0.1.1-dev0
- Minor bugfixes.
- 100% line coverage.
## Release 0.1.0-dev0
Initial public release of ProtoTorch.

View File

@ -1,20 +0,0 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= python3 -m sphinx
SOURCEDIR = source
BUILDDIR = build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View File

@ -1,35 +0,0 @@
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=source
set BUILDDIR=build
if "%1" == "" goto help
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.http://sphinx-doc.org/
exit /b 1
)
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd

View File

@ -1,4 +0,0 @@
torch==1.6.0
matplotlib==3.1.2
sphinx_rtd_theme==0.5.0
sphinxcontrib-katex==0.6.1

Binary file not shown.

Before

Width:  |  Height:  |  Size: 88 KiB

View File

@ -1,57 +0,0 @@
.. ProtoTorch API Reference
ProtoTorch API Reference
======================================
Datasets
--------------------------------------
Common Datasets
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: prototorch.datasets
:members:
Abstract Datasets
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Abstract Datasets are used to build your own datasets.
.. autoclass:: prototorch.datasets.abstract.NumpyDataset
:members:
Functions
--------------------------------------
**Dimensions:**
- :math:`B` ... Batch size
- :math:`P` ... Number of prototypes
- :math:`n_x` ... Data dimension for vectorial data
- :math:`n_w` ... Data dimension for vectorial prototypes
Activations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: prototorch.functions.activations
:members:
:exclude-members: register_activation, get_activation
:undoc-members:
Distances
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: prototorch.functions.distances
:members:
:exclude-members: sed
:undoc-members:
Modules
--------------------------------------
.. automodule:: prototorch.modules
:members:
:undoc-members:
Utilities
--------------------------------------
.. automodule:: prototorch.utils
:members:
:undoc-members:

View File

@ -1,192 +0,0 @@
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath("../../"))
# -- Project information -----------------------------------------------------
project = "ProtoTorch"
copyright = "2021, Jensun Ravichandran"
author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags
#
release = "0.7.6"
# -- General configuration ---------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#
needs_sphinx = "1.6"
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named "sphinx.ext.*") or your custom
# ones.
extensions = [
"recommonmark",
"sphinx.ext.autodoc",
"sphinx.ext.autosummary",
"sphinx.ext.doctest",
"sphinx.ext.intersphinx",
"sphinx.ext.todo",
"sphinx.ext.coverage",
"sphinx.ext.napoleon",
"sphinx.ext.viewcode",
"sphinx_rtd_theme",
"sphinxcontrib.katex",
'sphinx_autodoc_typehints',
]
# katex_prerender = True
katex_prerender = False
napoleon_use_ivar = True
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
#
source_suffix = [".rst", ".md"]
# The master toctree document.
master_doc = "index"
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = []
# The name of the Pygments (syntax highlighting) style to use. Choose from:
# ["default", "emacs", "friendly", "colorful", "autumn", "murphy", "manni",
# "monokai", "perldoc", "pastie", "borland", "trac", "native", "fruity", "bw",
# "vim", "vs", "tango", "rrt", "xcode", "igor", "paraiso-light", "paraiso-dark",
# "lovelace", "algol", "algol_nu", "arduino", "rainbo w_dash", "abap",
# "solarized-dark", "solarized-light", "sas", "stata", "stata-light",
# "stata-dark", "inkpot"]
pygments_style = "monokai"
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = True
# Disable docstring inheritance
autodoc_inherit_docstrings = False
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
# https://sphinx-themes.org/
html_theme = "sphinx_rtd_theme"
html_logo = "_static/img/horizontal-lockup.png"
html_theme_options = {
"logo_only": True,
"display_version": True,
"prev_next_buttons_location": "bottom",
"style_external_links": False,
"style_nav_header_background": "#ffffff",
# Toc options
"collapse_navigation": True,
"sticky_navigation": True,
"navigation_depth": 4,
"includehidden": True,
"titles_only": False,
}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
html_css_files = [
"https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css",
]
# -- Options for HTMLHelp output ------------------------------------------
# Output file base name for HTML help builder.
htmlhelp_basename = "prototorchdoc"
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
# The paper size ("letterpaper" or "a4paper").
#
# "papersize": "letterpaper",
# The font size ("10pt", "11pt" or "12pt").
#
# "pointsize": "10pt",
# Additional stuff for the LaTeX preamble.
#
# "preamble": "",
# Latex figure (float) alignment
#
# "figure_align": "htbp",
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(
master_doc,
"prototorch.tex",
"ProtoTorch Documentation",
"Jensun Ravichandran",
"manual",
),
]
# -- Options for manual page output ---------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [(master_doc, "ProtoTorch", "ProtoTorch Documentation", [author],
1)]
# -- Options for Texinfo output -------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(
master_doc,
"prototorch",
"ProtoTorch Documentation",
author,
"prototorch",
"Prototype-based machine learning in PyTorch.",
"Miscellaneous",
),
]
# Example configuration for intersphinx: refer to the Python standard library.
intersphinx_mapping = {
"python": ("https://docs.python.org/", None),
"numpy": ("https://docs.scipy.org/doc/numpy/", None),
"torch": ('https://pytorch.org/docs/stable/', None),
"pytorch_lightning":
("https://pytorch-lightning.readthedocs.io/en/stable/", None),
}
# -- Options for Epub output ----------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-epub-output
epub_cover = ()
version = release

View File

@ -1,22 +0,0 @@
.. ProtoTorch documentation master file
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
About ProtoTorch
================
.. toctree::
:hidden:
:maxdepth: 3
:caption: Contents:
self
api
ProtoTorch is a PyTorch-based Python toolbox for bleeding-edge
research in prototype-based machine learning algorithms.
Indices
=======
* :ref:`genindex`
* :ref:`modindex`

View File

@ -1,100 +0,0 @@
"""ProtoTorch CBC example using 2D Iris data."""
import logging
import torch
from matplotlib import pyplot as plt
import prototorch as pt
class CBC(torch.nn.Module):
def __init__(self, data, **kwargs):
super().__init__(**kwargs)
self.components_layer = pt.components.ReasoningComponents(
distribution=[2, 1, 2],
components_initializer=pt.initializers.SSCI(data, noise=0.1),
reasonings_initializer=pt.initializers.PPRI(components_first=True),
)
def forward(self, x):
components, reasonings = self.components_layer()
sims = pt.similarities.euclidean_similarity(x, components)
probs = pt.competitions.cbcc(sims, reasonings)
return probs
class VisCBC2D():
def __init__(self, model, data):
self.model = model
self.x_train, self.y_train = pt.utils.parse_data_arg(data)
self.title = "Components Visualization"
self.fig = plt.figure(self.title)
self.border = 0.1
self.resolution = 100
self.cmap = "viridis"
def on_train_epoch_end(self):
x_train, y_train = self.x_train, self.y_train
_components = self.model.components_layer._components.detach()
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
ax.axis("off")
ax.scatter(
x_train[:, 0],
x_train[:, 1],
c=y_train,
cmap=self.cmap,
edgecolor="k",
marker="o",
s=30,
)
ax.scatter(
_components[:, 0],
_components[:, 1],
c="w",
cmap=self.cmap,
edgecolor="k",
marker="D",
s=50,
)
x = torch.vstack((x_train, _components))
mesh_input, xx, yy = pt.utils.mesh2d(x, self.border, self.resolution)
with torch.no_grad():
y_pred = self.model(
torch.Tensor(mesh_input).type_as(_components)).argmax(1)
y_pred = y_pred.cpu().reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
plt.pause(0.2)
if __name__ == "__main__":
train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
model = CBC(train_ds)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = pt.losses.MarginLoss(margin=0.1)
vis = VisCBC2D(model, train_ds)
for epoch in range(200):
correct = 0.0
for x, y in train_loader:
y_oh = torch.eye(3)[y]
y_pred = model(x)
loss = criterion(y_pred, y_oh).mean(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
correct += (y_pred.argmax(1) == y).float().sum(0)
acc = 100 * correct / len(train_ds)
logging.info(f"Epoch: {epoch} Accuracy: {acc:05.02f}%")
vis.on_train_epoch_end()

103
examples/glvq_iris.py Normal file
View File

@ -0,0 +1,103 @@
"""ProtoTorch GLVQ example using 2D Iris data"""
import numpy as np
import torch
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from prototorch.functions.distances import euclidean_distance
from prototorch.modules.losses import GLVQLoss
from prototorch.modules.prototypes import AddPrototypes1D
# Prepare and preprocess the data
scaler = StandardScaler()
x_train, y_train = load_iris(True)
x_train = x_train[:, [0, 2]]
scaler.fit(x_train)
x_train = scaler.transform(x_train)
# Define the GLVQ model
class Model(torch.nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.p1 = AddPrototypes1D(input_dim=2,
prototypes_per_class=1,
nclasses=3,
prototype_initializer='zeros')
def forward(self, x):
protos = self.p1.prototypes
plabels = self.p1.prototype_labels
dis = euclidean_distance(x, protos)
return dis, plabels
# Build the GLVQ model
model = Model()
# Optimize using SGD optimizer from `torch.optim`
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
criterion = GLVQLoss(squashing='sigmoid_beta', beta=10)
# Training loop
fig = plt.figure('Prototype Visualization')
for epoch in range(70):
# Compute loss.
distances, plabels = model(torch.tensor(x_train))
loss = criterion([distances, plabels], torch.tensor(y_train))
print(f'Epoch: {epoch + 1:03d} Loss: {loss.item():02.02f}')
# Take a gradient descent step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Get the prototypes form the model
protos = model.p1.prototypes.data.numpy()
# Visualize the data and the prototypes
ax = fig.gca()
ax.cla()
cmap = 'viridis'
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor='k')
ax.scatter(protos[:, 0],
protos[:, 1],
c=plabels,
cmap=cmap,
edgecolor='k',
marker='D',
s=50)
# Paint decision regions
border = 1
resolution = 50
x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min(), x[:, 0].max()
y_min, y_max = x[:, 1].min(), x[:, 1].max()
x_min, x_max = x_min - border, x_max + border
y_min, y_max = y_min - border, y_max + border
try:
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1.0 / resolution),
np.arange(y_min, y_max, 1.0 / resolution))
except ValueError as ve:
print(ve)
raise ValueError(f'x_min: {x_min}, x_max: {x_max}. '
f'x_min - x_max is {x_max - x_min}.')
except MemoryError as me:
print(me)
raise ValueError('Too many points. ' 'Try reducing the resolution.')
mesh_input = np.c_[xx.ravel(), yy.ravel()]
torch_input = torch.from_numpy(mesh_input)
d = model(torch_input)[0]
y_pred = np.argmin(d.detach().numpy(), axis=1)
y_pred = y_pred.reshape(xx.shape)
# Plot voronoi regions
ax.contourf(xx, yy, y_pred, cmap=cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
plt.pause(0.1)

View File

@ -1,76 +0,0 @@
"""ProtoTorch GMLVQ example using Iris data."""
import torch
import prototorch as pt
class GMLVQ(torch.nn.Module):
"""
Implementation of Generalized Matrix Learning Vector Quantization.
"""
def __init__(self, data, **kwargs):
super().__init__(**kwargs)
self.components_layer = pt.components.LabeledComponents(
distribution=[1, 1, 1],
components_initializer=pt.initializers.SMCI(data, noise=0.1),
)
self.backbone = pt.transforms.Omega(
len(data[0][0]),
len(data[0][0]),
pt.initializers.RandomLinearTransformInitializer(),
)
def forward(self, data):
"""
Forward function that returns a tuple of dissimilarities and label information.
Feed into GLVQLoss to get a complete GMLVQ model.
"""
components, label = self.components_layer()
latent_x = self.backbone(data)
latent_components = self.backbone(components)
distance = pt.distances.squared_euclidean_distance(
latent_x, latent_components)
return distance, label
def predict(self, data):
"""
The GMLVQ has a modified prediction step, where a competition layer is applied.
"""
components, label = self.components_layer()
distance = pt.distances.squared_euclidean_distance(data, components)
winning_label = pt.competitions.wtac(distance, label)
return winning_label
if __name__ == "__main__":
train_ds = pt.datasets.Iris()
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
model = GMLVQ(train_ds)
optimizer = torch.optim.Adam(model.parameters(), lr=0.05)
criterion = pt.losses.GLVQLoss()
for epoch in range(200):
correct = 0.0
for x, y in train_loader:
d, labels = model(x)
loss = criterion(d, y, labels).mean(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
y_pred = model.predict(x)
correct += (y_pred == y).float().sum(0)
acc = 100 * correct / len(train_ds)
print(f"Epoch: {epoch} Accuracy: {acc:05.02f}%")

View File

@ -1,56 +0,0 @@
"""This example script shows the usage of the new components architecture.
Serialization/deserialization also works as expected.
"""
import torch
import prototorch as pt
ds = pt.datasets.Iris()
unsupervised = pt.components.Components(
6,
initializer=pt.initializers.ZCI(2),
)
print(unsupervised())
prototypes = pt.components.LabeledComponents(
(3, 2),
components_initializer=pt.initializers.SSCI(ds),
)
print(prototypes())
components = pt.components.ReasoningComponents(
(3, 2),
components_initializer=pt.initializers.SSCI(ds),
reasonings_initializer=pt.initializers.PPRI(),
)
print(prototypes())
# Test Serialization
import io
save = io.BytesIO()
torch.save(unsupervised, save)
save.seek(0)
serialized_unsupervised = torch.load(save)
assert torch.all(unsupervised.components == serialized_unsupervised.components)
save = io.BytesIO()
torch.save(prototypes, save)
save.seek(0)
serialized_prototypes = torch.load(save)
assert torch.all(prototypes.components == serialized_prototypes.components)
assert torch.all(prototypes.labels == serialized_prototypes.labels)
save = io.BytesIO()
torch.save(components, save)
save.seek(0)
serialized_components = torch.load(save)
assert torch.all(components.components == serialized_components.components)
assert torch.all(components.reasonings == serialized_components.reasonings)

View File

@ -1,61 +1 @@
"""ProtoTorch package"""
import pkgutil
import pkg_resources
from . import datasets # noqa: F401
from . import nn # noqa: F401
from . import utils # noqa: F401
from .core import competitions # noqa: F401
from .core import components # noqa: F401
from .core import distances # noqa: F401
from .core import initializers # noqa: F401
from .core import losses # noqa: F401
from .core import pooling # noqa: F401
from .core import similarities # noqa: F401
from .core import transforms # noqa: F401
# Core Setup
__version__ = "0.7.6"
__all_core__ = [
"competitions",
"components",
"core",
"datasets",
"distances",
"initializers",
"losses",
"nn",
"pooling",
"similarities",
"transforms",
"utils",
]
# Plugin Loader
__path__ = pkgutil.extend_path(__path__, __name__)
def discover_plugins():
return {
entry_point.name: entry_point.load()
for entry_point in pkg_resources.iter_entry_points(
"prototorch.plugins")
}
discovered_plugins = discover_plugins()
locals().update(discovered_plugins)
# Generate combines __version__ and __all__
version_plugins = "\n".join([
"- " + name + ": v" + plugin.__version__
for name, plugin in discovered_plugins.items()
])
if version_plugins != "":
version_plugins = "\nPlugins: \n" + version_plugins
version = "core: v" + __version__ + version_plugins
__all__ = __all_core__ + list(discovered_plugins.keys())
__version__ = '0.1.0-dev0'

View File

@ -1,10 +0,0 @@
"""ProtoTorch core"""
from .competitions import *
from .components import *
from .distances import *
from .initializers import *
from .losses import *
from .pooling import *
from .similarities import *
from .transforms import *

View File

@ -1,93 +0,0 @@
"""ProtoTorch competitions"""
import torch
def wtac(distances: torch.Tensor, labels: torch.LongTensor):
"""Winner-Takes-All-Competition.
Returns the labels corresponding to the winners.
"""
winning_indices = torch.min(distances, dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels
def knnc(distances: torch.Tensor, labels: torch.LongTensor, k: int = 1):
"""K-Nearest-Neighbors-Competition.
Returns the labels corresponding to the winners.
"""
winning_indices = torch.topk(-distances, k=k, dim=1).indices
winning_labels = torch.mode(labels[winning_indices], dim=1).values
return winning_labels
def cbcc(detections: torch.Tensor, reasonings: torch.Tensor):
"""Classification-By-Components Competition.
Returns probability distributions over the classes.
`detections` must be of shape [batch_size, num_components].
`reasonings` must be of shape [num_components, num_classes, 2].
"""
A, B = reasonings.permute(2, 1, 0).clamp(0, 1)
pk = A
nk = (1 - A) * B
numerator = (detections @ (pk - nk).T) + nk.sum(1)
probs = numerator / ((pk + nk).sum(1) + 1e-8)
return probs
class WTAC(torch.nn.Module):
"""Winner-Takes-All-Competition Layer.
Thin wrapper over the `wtac` function.
"""
def forward(self, distances, labels): # pylint: disable=no-self-use
return wtac(distances, labels)
class LTAC(torch.nn.Module):
"""Loser-Takes-All-Competition Layer.
Thin wrapper over the `wtac` function.
"""
def forward(self, probs, labels): # pylint: disable=no-self-use
return wtac(-1.0 * probs, labels)
class KNNC(torch.nn.Module):
"""K-Nearest-Neighbors-Competition.
Thin wrapper over the `knnc` function.
"""
def __init__(self, k=1, **kwargs):
super().__init__(**kwargs)
self.k = k
def forward(self, distances, labels):
return knnc(distances, labels, k=self.k)
def extra_repr(self):
return f"k: {self.k}"
class CBCC(torch.nn.Module):
"""Classification-By-Components Competition.
Thin wrapper over the `cbcc` function.
"""
def forward(self, detections, reasonings): # pylint: disable=no-self-use
return cbcc(detections, reasonings)

View File

@ -1,380 +0,0 @@
"""ProtoTorch components"""
import inspect
from typing import Union
import torch
from torch.nn.parameter import Parameter
from prototorch.utils import parse_distribution
from .initializers import (
AbstractClassAwareCompInitializer,
AbstractComponentsInitializer,
AbstractLabelsInitializer,
AbstractReasoningsInitializer,
LabelsInitializer,
PurePositiveReasoningsInitializer,
RandomReasoningsInitializer,
)
def validate_initializer(initializer, instanceof):
"""Check if the initializer is valid."""
if not isinstance(initializer, instanceof):
emsg = f"`initializer` has to be an instance " \
f"of some subtype of {instanceof}. " \
f"You have provided: {initializer} instead. "
helpmsg = ""
if inspect.isclass(initializer):
helpmsg = f"Perhaps you meant to say, {initializer.__name__}() " \
f"with the brackets instead of just {initializer.__name__}?"
raise TypeError(emsg + helpmsg)
return True
def gencat(ins, attr, init, *iargs, **ikwargs):
"""Generate new items and concatenate with existing items."""
new_items = init.generate(*iargs, **ikwargs)
if hasattr(ins, attr):
items = torch.cat([getattr(ins, attr), new_items])
else:
items = new_items
return items, new_items
def removeind(ins, attr, indices):
"""Remove items at specified indices."""
mask = torch.ones(len(ins), dtype=torch.bool)
mask[indices] = False
items = getattr(ins, attr)[mask]
return items, mask
def get_cikwargs(init, distribution):
"""Return appropriate key-word arguments for a component initializer."""
if isinstance(init, AbstractClassAwareCompInitializer):
cikwargs = dict(distribution=distribution)
else:
distribution = parse_distribution(distribution)
num_components = sum(distribution.values())
cikwargs = dict(num_components=num_components)
return cikwargs
class AbstractComponents(torch.nn.Module):
"""Abstract class for all components modules."""
@property
def num_components(self):
"""Current number of components."""
return len(self._components)
@property
def components(self):
"""Detached Tensor containing the components."""
return self._components.detach().cpu()
def _register_components(self, components):
self.register_parameter("_components", Parameter(components))
def extra_repr(self):
return f"components: (shape: {tuple(self._components.shape)})"
def __len__(self):
return self.num_components
class Components(AbstractComponents):
"""A set of adaptable Tensors."""
def __init__(self, num_components: int,
initializer: AbstractComponentsInitializer):
super().__init__()
self.add_components(num_components, initializer)
def add_components(self, num_components: int,
initializer: AbstractComponentsInitializer):
"""Generate and add new components."""
assert validate_initializer(initializer, AbstractComponentsInitializer)
_components, new_components = gencat(self, "_components", initializer,
num_components)
self._register_components(_components)
return new_components
def remove_components(self, indices):
"""Remove components at specified indices."""
_components, mask = removeind(self, "_components", indices)
self._register_components(_components)
return mask
def forward(self):
"""Simply return the components parameter Tensor."""
return self._components
class AbstractLabels(torch.nn.Module):
"""Abstract class for all labels modules."""
@property
def labels(self):
return self._labels.cpu()
@property
def num_labels(self):
return len(self._labels)
@property
def unique_labels(self):
return torch.unique(self._labels)
@property
def num_unique(self):
return len(self.unique_labels)
@property
def distribution(self):
unique, counts = torch.unique(self._labels,
sorted=True,
return_counts=True)
return dict(zip(unique.tolist(), counts.tolist()))
def _register_labels(self, labels):
self.register_buffer("_labels", labels)
def extra_repr(self):
r = f"num_labels: {self.num_labels}, num_unique: {self.num_unique}"
if len(self.distribution) < 11: # avoid lengthy representations
d = self.distribution
unique, counts = list(d.keys()), list(d.values())
r += f", unique: {unique}, counts: {counts}"
return r
def __len__(self):
return self.num_labels
class Labels(AbstractLabels):
"""A set of standalone labels."""
def __init__(self,
distribution: Union[dict, list, tuple],
initializer: AbstractLabelsInitializer = LabelsInitializer()):
super().__init__()
self.add_labels(distribution, initializer)
def add_labels(
self,
distribution: Union[dict, tuple, list],
initializer: AbstractLabelsInitializer = LabelsInitializer()):
"""Generate and add new labels."""
assert validate_initializer(initializer, AbstractLabelsInitializer)
_labels, new_labels = gencat(self, "_labels", initializer,
distribution)
self._register_labels(_labels)
return new_labels
def remove_labels(self, indices):
"""Remove labels at specified indices."""
_labels, mask = removeind(self, "_labels", indices)
self._register_labels(_labels)
return mask
def forward(self):
"""Simply return the labels."""
return self._labels
class LabeledComponents(AbstractComponents):
"""A set of adaptable components and corresponding unadaptable labels."""
def __init__(
self,
distribution: Union[dict, list, tuple],
components_initializer: AbstractComponentsInitializer,
labels_initializer: AbstractLabelsInitializer = LabelsInitializer()):
super().__init__()
self.add_components(distribution, components_initializer,
labels_initializer)
@property
def distribution(self):
unique, counts = torch.unique(self._labels,
sorted=True,
return_counts=True)
return dict(zip(unique.tolist(), counts.tolist()))
@property
def num_classes(self):
return len(self.distribution.keys())
@property
def labels(self):
"""Tensor containing the component labels."""
return self._labels.cpu()
def _register_labels(self, labels):
self.register_buffer("_labels", labels)
def add_components(
self,
distribution,
components_initializer,
labels_initializer: AbstractLabelsInitializer = LabelsInitializer()):
"""Generate and add new components and labels."""
assert validate_initializer(components_initializer,
AbstractComponentsInitializer)
assert validate_initializer(labels_initializer,
AbstractLabelsInitializer)
cikwargs = get_cikwargs(components_initializer, distribution)
_components, new_components = gencat(self, "_components",
components_initializer,
**cikwargs)
_labels, new_labels = gencat(self, "_labels", labels_initializer,
distribution)
self._register_components(_components)
self._register_labels(_labels)
return new_components, new_labels
def remove_components(self, indices):
"""Remove components and labels at specified indices."""
_components, mask = removeind(self, "_components", indices)
_labels, mask = removeind(self, "_labels", indices)
self._register_components(_components)
self._register_labels(_labels)
return mask
def forward(self):
"""Simply return the components parameter Tensor and labels."""
return self._components, self._labels
class Reasonings(torch.nn.Module):
"""A set of standalone reasoning matrices.
The `reasonings` tensor is of shape [num_components, num_classes, 2].
"""
def __init__(
self,
distribution: Union[dict, list, tuple],
initializer:
AbstractReasoningsInitializer = RandomReasoningsInitializer(),
):
super().__init__()
self.add_reasonings(distribution, initializer)
@property
def num_classes(self):
return self._reasonings.shape[1]
@property
def reasonings(self):
"""Tensor containing the reasoning matrices."""
return self._reasonings.detach().cpu()
def _register_reasonings(self, reasonings):
self.register_buffer("_reasonings", reasonings)
def add_reasonings(
self,
distribution: Union[dict, list, tuple],
initializer:
AbstractReasoningsInitializer = RandomReasoningsInitializer()):
"""Generate and add new reasonings."""
assert validate_initializer(initializer, AbstractReasoningsInitializer)
_reasonings, new_reasonings = gencat(self, "_reasonings", initializer,
distribution)
self._register_reasonings(_reasonings)
return new_reasonings
def remove_reasonings(self, indices):
"""Remove reasonings at specified indices."""
_reasonings, mask = removeind(self, "_reasonings", indices)
self._register_reasonings(_reasonings)
return mask
def forward(self):
"""Simply return the reasonings."""
return self._reasonings
class ReasoningComponents(AbstractComponents):
r"""A set of components and a corresponding adapatable reasoning matrices.
Every component has its own reasoning matrix.
A reasoning matrix is an Nx2 matrix, where N is the number of classes. The
first element is called positive reasoning :math:`p`, the second negative
reasoning :math:`n`. A components can reason in favour (positive) of a
class, against (negative) a class or not at all (neutral).
It holds that :math:`0 \leq n \leq 1`, :math:`0 \leq p \leq 1` and :math:`0
\leq n+p \leq 1`. Therefore :math:`n` and :math:`p` are two elements of a
three element probability distribution.
"""
def __init__(
self,
distribution: Union[dict, list, tuple],
components_initializer: AbstractComponentsInitializer,
reasonings_initializer:
AbstractReasoningsInitializer = PurePositiveReasoningsInitializer()):
super().__init__()
self.add_components(distribution, components_initializer,
reasonings_initializer)
@property
def num_classes(self):
return self._reasonings.shape[1]
@property
def reasonings(self):
"""Tensor containing the reasoning matrices."""
return self._reasonings.detach().cpu()
@property
def reasoning_matrices(self):
"""Reasoning matrices for each class."""
with torch.no_grad():
A, B = self._reasonings.permute(2, 1, 0).clamp(0, 1)
pk = A
nk = (1 - pk) * B
ik = 1 - pk - nk
matrices = torch.stack([pk, nk, ik], dim=-1).permute(1, 2, 0)
return matrices.cpu()
def _register_reasonings(self, reasonings):
self.register_parameter("_reasonings", Parameter(reasonings))
def add_components(self, distribution, components_initializer,
reasonings_initializer: AbstractReasoningsInitializer):
"""Generate and add new components and reasonings."""
assert validate_initializer(components_initializer,
AbstractComponentsInitializer)
assert validate_initializer(reasonings_initializer,
AbstractReasoningsInitializer)
cikwargs = get_cikwargs(components_initializer, distribution)
_components, new_components = gencat(self, "_components",
components_initializer,
**cikwargs)
_reasonings, new_reasonings = gencat(self, "_reasonings",
reasonings_initializer,
distribution)
self._register_components(_components)
self._register_reasonings(_reasonings)
return new_components, new_reasonings
def remove_components(self, indices):
"""Remove components and reasonings at specified indices."""
_components, mask = removeind(self, "_components", indices)
_reasonings, mask = removeind(self, "_reasonings", indices)
self._register_components(_components)
self._register_reasonings(_reasonings)
return mask
def forward(self):
"""Simply return the components and reasonings."""
return self._components, self._reasonings

View File

@ -1,95 +0,0 @@
"""ProtoTorch distances"""
import torch
def squared_euclidean_distance(x, y):
r"""Compute the squared Euclidean distance between :math:`\bm x` and :math:`\bm y`.
Compute :math:`{\langle \bm x - \bm y \rangle}_2`
**Alias:**
``prototorch.functions.distances.sed``
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
expanded_x = x.unsqueeze(dim=1)
batchwise_difference = y - expanded_x
differences_raised = torch.pow(batchwise_difference, 2)
distances = torch.sum(differences_raised, axis=2)
return distances
def euclidean_distance(x, y):
r"""Compute the Euclidean distance between :math:`x` and :math:`y`.
Compute :math:`\sqrt{{\langle \bm x - \bm y \rangle}_2}`
:returns: Distance Tensor of shape :math:`X \times Y`
:rtype: `torch.tensor`
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
distances_raised = squared_euclidean_distance(x, y)
distances = torch.sqrt(distances_raised)
return distances
def euclidean_distance_v2(x, y):
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
diff = y - x.unsqueeze(1)
pairwise_distances = (diff @ diff.permute((0, 2, 1))).sqrt()
# Passing `dim1=-2` and `dim2=-1` to `diagonal()` takes the
# batch diagonal. See:
# https://pytorch.org/docs/stable/generated/torch.diagonal.html
distances = torch.diagonal(pairwise_distances, dim1=-2, dim2=-1)
return distances
def lpnorm_distance(x, y, p):
r"""Calculate the lp-norm between :math:`\bm x` and :math:`\bm y`.
Also known as Minkowski distance.
Compute :math:`{\| \bm x - \bm y \|}_p`.
Calls ``torch.cdist``
:param p: p parameter of the lp norm
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
distances = torch.cdist(x, y, p=p)
return distances
def omega_distance(x, y, omega):
r"""Omega distance.
Compute :math:`{\| \Omega \bm x - \Omega \bm y \|}_p`
:param `torch.tensor` omega: Two dimensional matrix
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
projected_x = x @ omega
projected_y = y @ omega
distances = squared_euclidean_distance(projected_x, projected_y)
return distances
def lomega_distance(x, y, omegas):
r"""Localized Omega distance.
Compute :math:`{\| \Omega_k \bm x - \Omega_k \bm y_k \|}_p`
:param `torch.tensor` omegas: Three dimensional matrix
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
projected_x = x @ omegas
projected_y = torch.diagonal(y @ omegas).T
expanded_y = torch.unsqueeze(projected_y, dim=1)
batchwise_difference = expanded_y - projected_x
differences_squared = batchwise_difference**2
distances = torch.sum(differences_squared, dim=2)
distances = distances.permute(1, 0)
return distances
# Aliases
sed = squared_euclidean_distance

View File

@ -1,555 +0,0 @@
"""ProtoTorch code initializers"""
import warnings
from abc import ABC, abstractmethod
from collections.abc import Iterable
from typing import (
Callable,
Type,
Union,
)
import torch
from prototorch.utils import parse_data_arg, parse_distribution
# Components
class AbstractComponentsInitializer(ABC):
"""Abstract class for all components initializers."""
...
class LiteralCompInitializer(AbstractComponentsInitializer):
"""'Generate' the provided components.
Use this to 'generate' pre-initialized components elsewhere.
"""
def __init__(self, components):
self.components = components
def generate(self, num_components: int = 0):
"""Ignore `num_components` and simply return `self.components`."""
provided_num_components = len(self.components)
if provided_num_components != num_components:
wmsg = f"The number of components ({provided_num_components}) " \
f"provided to {self.__class__.__name__} " \
f"does not match the expected number ({num_components})."
warnings.warn(wmsg)
if not isinstance(self.components, torch.Tensor):
wmsg = f"Converting components to {torch.Tensor}..."
warnings.warn(wmsg)
self.components = torch.Tensor(self.components)
return self.components
class ShapeAwareCompInitializer(AbstractComponentsInitializer):
"""Abstract class for all dimension-aware components initializers."""
def __init__(self, shape: Union[Iterable, int]):
if isinstance(shape, Iterable):
self.component_shape = tuple(shape)
else:
self.component_shape = (shape, )
@abstractmethod
def generate(self, num_components: int):
...
class ZerosCompInitializer(ShapeAwareCompInitializer):
"""Generate zeros corresponding to the components shape."""
def generate(self, num_components: int):
components = torch.zeros((num_components, ) + self.component_shape)
return components
class OnesCompInitializer(ShapeAwareCompInitializer):
"""Generate ones corresponding to the components shape."""
def generate(self, num_components: int):
components = torch.ones((num_components, ) + self.component_shape)
return components
class FillValueCompInitializer(OnesCompInitializer):
"""Generate components with the provided `fill_value`."""
def __init__(self, shape, fill_value: float = 1.0):
super().__init__(shape)
self.fill_value = fill_value
def generate(self, num_components: int):
ones = super().generate(num_components)
components = ones.fill_(self.fill_value)
return components
class UniformCompInitializer(OnesCompInitializer):
"""Generate components by sampling from a continuous uniform distribution."""
def __init__(self, shape, minimum=0.0, maximum=1.0, scale=1.0):
super().__init__(shape)
self.minimum = minimum
self.maximum = maximum
self.scale = scale
def generate(self, num_components: int):
ones = super().generate(num_components)
components = self.scale * ones.uniform_(self.minimum, self.maximum)
return components
class RandomNormalCompInitializer(OnesCompInitializer):
"""Generate components by sampling from a standard normal distribution."""
def __init__(self, shape, shift=0.0, scale=1.0):
super().__init__(shape)
self.shift = shift
self.scale = scale
def generate(self, num_components: int):
ones = super().generate(num_components)
components = self.scale * (torch.randn_like(ones) + self.shift)
return components
class AbstractDataAwareCompInitializer(AbstractComponentsInitializer):
"""Abstract class for all data-aware components initializers.
Components generated by data-aware components initializers inherit the shape
of the provided data.
`data` has to be a torch tensor.
"""
def __init__(self,
data: torch.Tensor,
noise: float = 0.0,
transform: Callable = torch.nn.Identity()):
self.data = data
self.noise = noise
self.transform = transform
def generate_end_hook(self, samples):
drift = torch.rand_like(samples) * self.noise
components = self.transform(samples + drift)
return components
@abstractmethod
def generate(self, num_components: int):
...
return self.generate_end_hook(...)
def __del__(self):
del self.data
class DataAwareCompInitializer(AbstractDataAwareCompInitializer):
"""'Generate' the components from the provided data."""
def generate(self, num_components: int = 0):
"""Ignore `num_components` and simply return transformed `self.data`."""
components = self.generate_end_hook(self.data)
return components
class SelectionCompInitializer(AbstractDataAwareCompInitializer):
"""Generate components by uniformly sampling from the provided data."""
def generate(self, num_components: int):
indices = torch.LongTensor(num_components).random_(0, len(self.data))
samples = self.data[indices]
components = self.generate_end_hook(samples)
return components
class MeanCompInitializer(AbstractDataAwareCompInitializer):
"""Generate components by computing the mean of the provided data."""
def generate(self, num_components: int):
mean = self.data.mean(dim=0)
repeat_dim = [num_components] + [1] * len(mean.shape)
samples = mean.repeat(repeat_dim)
components = self.generate_end_hook(samples)
return components
class AbstractClassAwareCompInitializer(AbstractComponentsInitializer):
"""Abstract class for all class-aware components initializers.
Components generated by class-aware components initializers inherit the shape
of the provided data.
`data` could be a torch Dataset or DataLoader or a list/tuple of data and
target tensors.
"""
def __init__(self,
data,
noise: float = 0.0,
transform: Callable = torch.nn.Identity()):
self.data, self.targets = parse_data_arg(data)
self.noise = noise
self.transform = transform
self.clabels = torch.unique(self.targets).int().tolist()
self.num_classes = len(self.clabels)
def generate_end_hook(self, samples):
drift = torch.rand_like(samples) * self.noise
components = self.transform(samples + drift)
return components
@abstractmethod
def generate(self, distribution: Union[dict, list, tuple]):
...
return self.generate_end_hook(...)
def __del__(self):
del self.data
del self.targets
class ClassAwareCompInitializer(AbstractClassAwareCompInitializer):
"""'Generate' components from provided data and requested distribution."""
def generate(self, distribution: Union[dict, list, tuple]):
"""Ignore `distribution` and simply return transformed `self.data`."""
components = self.generate_end_hook(self.data)
return components
class AbstractStratifiedCompInitializer(AbstractClassAwareCompInitializer):
"""Abstract class for all stratified components initializers."""
@property
@abstractmethod
def subinit_type(self) -> Type[AbstractDataAwareCompInitializer]:
...
def generate(self, distribution: Union[dict, list, tuple]):
distribution = parse_distribution(distribution)
components = torch.tensor([])
for k, v in distribution.items():
stratified_data = self.data[self.targets == k]
if len(stratified_data) == 0:
raise ValueError(f"No data available for class {k}.")
initializer = self.subinit_type(
stratified_data,
noise=self.noise,
transform=self.transform,
)
samples = initializer.generate(num_components=v)
components = torch.cat([components, samples])
return components
class StratifiedSelectionCompInitializer(AbstractStratifiedCompInitializer):
"""Generate components using stratified sampling from the provided data."""
@property
def subinit_type(self):
return SelectionCompInitializer
class StratifiedMeanCompInitializer(AbstractStratifiedCompInitializer):
"""Generate components at stratified means of the provided data."""
@property
def subinit_type(self):
return MeanCompInitializer
# Labels
class AbstractLabelsInitializer(ABC):
"""Abstract class for all labels initializers."""
@abstractmethod
def generate(self, distribution: Union[dict, list, tuple]):
...
class LiteralLabelsInitializer(AbstractLabelsInitializer):
"""'Generate' the provided labels.
Use this to 'generate' pre-initialized labels elsewhere.
"""
def __init__(self, labels):
self.labels = labels
def generate(self, distribution: Union[dict, list, tuple]):
"""Ignore `distribution` and simply return `self.labels`.
Convert to long tensor, if necessary.
"""
labels = self.labels
if not isinstance(labels, torch.LongTensor):
wmsg = f"Converting labels to {torch.LongTensor}..."
warnings.warn(wmsg)
labels = torch.LongTensor(labels)
return labels
class DataAwareLabelsInitializer(AbstractLabelsInitializer):
"""'Generate' the labels from a torch Dataset."""
def __init__(self, data):
self.data, self.targets = parse_data_arg(data)
def generate(self, distribution: Union[dict, list, tuple]):
"""Ignore `num_components` and simply return `self.targets`."""
return self.targets
class LabelsInitializer(AbstractLabelsInitializer):
"""Generate labels from `distribution`."""
def generate(self, distribution: Union[dict, list, tuple]):
distribution = parse_distribution(distribution)
labels_list = []
for k, v in distribution.items():
labels_list.extend([k] * v)
labels = torch.LongTensor(labels_list)
return labels
class OneHotLabelsInitializer(LabelsInitializer):
"""Generate one-hot-encoded labels from `distribution`."""
def generate(self, distribution: Union[dict, list, tuple]):
distribution = parse_distribution(distribution)
num_classes = len(distribution.keys())
# this breaks if class labels are not [0,...,nclasses]
labels = torch.eye(num_classes)[super().generate(distribution)]
return labels
# Reasonings
def compute_distribution_shape(distribution):
distribution = parse_distribution(distribution)
num_components = sum(distribution.values())
num_classes = len(distribution.keys())
return (num_components, num_classes, 2)
class AbstractReasoningsInitializer(ABC):
"""Abstract class for all reasonings initializers."""
def __init__(self, components_first: bool = True):
self.components_first = components_first
def generate_end_hook(self, reasonings):
if not self.components_first:
reasonings = reasonings.permute(2, 1, 0)
return reasonings
@abstractmethod
def generate(self, distribution: Union[dict, list, tuple]):
...
return self.generate_end_hook(...)
class LiteralReasoningsInitializer(AbstractReasoningsInitializer):
"""'Generate' the provided reasonings.
Use this to 'generate' pre-initialized reasonings elsewhere.
"""
def __init__(self, reasonings, **kwargs):
super().__init__(**kwargs)
self.reasonings = reasonings
def generate(self, distribution: Union[dict, list, tuple]):
"""Ignore `distributuion` and simply return self.reasonings."""
reasonings = self.reasonings
if not isinstance(reasonings, torch.Tensor):
wmsg = f"Converting reasonings to {torch.Tensor}..."
warnings.warn(wmsg)
reasonings = torch.Tensor(reasonings)
reasonings = self.generate_end_hook(reasonings)
return reasonings
class ZerosReasoningsInitializer(AbstractReasoningsInitializer):
"""Reasonings are all initialized with zeros."""
def generate(self, distribution: Union[dict, list, tuple]):
shape = compute_distribution_shape(distribution)
reasonings = torch.zeros(*shape)
reasonings = self.generate_end_hook(reasonings)
return reasonings
class OnesReasoningsInitializer(AbstractReasoningsInitializer):
"""Reasonings are all initialized with ones."""
def generate(self, distribution: Union[dict, list, tuple]):
shape = compute_distribution_shape(distribution)
reasonings = torch.ones(*shape)
reasonings = self.generate_end_hook(reasonings)
return reasonings
class RandomReasoningsInitializer(AbstractReasoningsInitializer):
"""Reasonings are randomly initialized."""
def __init__(self, minimum=0.4, maximum=0.6, **kwargs):
super().__init__(**kwargs)
self.minimum = minimum
self.maximum = maximum
def generate(self, distribution: Union[dict, list, tuple]):
shape = compute_distribution_shape(distribution)
reasonings = torch.ones(*shape).uniform_(self.minimum, self.maximum)
reasonings = self.generate_end_hook(reasonings)
return reasonings
class PurePositiveReasoningsInitializer(AbstractReasoningsInitializer):
"""Each component reasons positively for exactly one class."""
def generate(self, distribution: Union[dict, list, tuple]):
num_components, num_classes, _ = compute_distribution_shape(
distribution)
A = OneHotLabelsInitializer().generate(distribution)
B = torch.zeros(num_components, num_classes)
reasonings = torch.stack([A, B], dim=-1)
reasonings = self.generate_end_hook(reasonings)
return reasonings
# Transforms
class AbstractTransformInitializer(ABC):
"""Abstract class for all transform initializers."""
...
class AbstractLinearTransformInitializer(AbstractTransformInitializer):
"""Abstract class for all linear transform initializers."""
def __init__(self, out_dim_first: bool = False):
self.out_dim_first = out_dim_first
def generate_end_hook(self, weights):
if self.out_dim_first:
weights = weights.permute(1, 0)
return weights
@abstractmethod
def generate(self, in_dim: int, out_dim: int):
...
return self.generate_end_hook(...)
class ZerosLinearTransformInitializer(AbstractLinearTransformInitializer):
"""Initialize a matrix with zeros."""
def generate(self, in_dim: int, out_dim: int):
weights = torch.zeros(in_dim, out_dim)
return self.generate_end_hook(weights)
class OnesLinearTransformInitializer(AbstractLinearTransformInitializer):
"""Initialize a matrix with ones."""
def generate(self, in_dim: int, out_dim: int):
weights = torch.ones(in_dim, out_dim)
return self.generate_end_hook(weights)
class RandomLinearTransformInitializer(AbstractLinearTransformInitializer):
"""Initialize a matrix with random values."""
def generate(self, in_dim: int, out_dim: int):
weights = torch.rand(in_dim, out_dim)
return self.generate_end_hook(weights)
class EyeLinearTransformInitializer(AbstractLinearTransformInitializer):
"""Initialize a matrix with the largest possible identity matrix."""
def generate(self, in_dim: int, out_dim: int):
weights = torch.zeros(in_dim, out_dim)
I = torch.eye(min(in_dim, out_dim))
weights[:I.shape[0], :I.shape[1]] = I
return self.generate_end_hook(weights)
class AbstractDataAwareLTInitializer(AbstractLinearTransformInitializer):
"""Abstract class for all data-aware linear transform initializers."""
def __init__(self,
data: torch.Tensor,
noise: float = 0.0,
transform: Callable = torch.nn.Identity(),
out_dim_first: bool = False):
super().__init__(out_dim_first)
self.data = data
self.noise = noise
self.transform = transform
def generate_end_hook(self, weights: torch.Tensor):
drift = torch.rand_like(weights) * self.noise
weights = self.transform(weights + drift)
if self.out_dim_first:
weights = weights.permute(1, 0)
return weights
class PCALinearTransformInitializer(AbstractDataAwareLTInitializer):
"""Initialize a matrix with Eigenvectors from the data."""
def generate(self, in_dim: int, out_dim: int):
_, _, weights = torch.pca_lowrank(self.data, q=out_dim)
return self.generate_end_hook(weights)
class LiteralLinearTransformInitializer(AbstractDataAwareLTInitializer):
"""'Generate' the provided weights."""
def generate(self, in_dim: int, out_dim: int):
return self.generate_end_hook(self.data)
# Aliases - Components
CACI = ClassAwareCompInitializer
DACI = DataAwareCompInitializer
FVCI = FillValueCompInitializer
LCI = LiteralCompInitializer
MCI = MeanCompInitializer
OCI = OnesCompInitializer
RNCI = RandomNormalCompInitializer
SCI = SelectionCompInitializer
SMCI = StratifiedMeanCompInitializer
SSCI = StratifiedSelectionCompInitializer
UCI = UniformCompInitializer
ZCI = ZerosCompInitializer
# Aliases - Labels
DLI = DataAwareLabelsInitializer
LI = LabelsInitializer
LLI = LiteralLabelsInitializer
OHLI = OneHotLabelsInitializer
# Aliases - Reasonings
LRI = LiteralReasoningsInitializer
ORI = OnesReasoningsInitializer
PPRI = PurePositiveReasoningsInitializer
RRI = RandomReasoningsInitializer
ZRI = ZerosReasoningsInitializer
# Aliases - Transforms
ELTI = Eye = EyeLinearTransformInitializer
OLTI = OnesLinearTransformInitializer
RLTI = RandomLinearTransformInitializer
ZLTI = ZerosLinearTransformInitializer
PCALTI = PCALinearTransformInitializer
LLTI = LiteralLinearTransformInitializer

View File

@ -1,184 +0,0 @@
"""ProtoTorch losses"""
import torch
from prototorch.nn.activations import get_activation
# Helpers
def _get_matcher(targets, labels):
"""Returns a boolean tensor."""
matcher = torch.eq(targets.unsqueeze(dim=1), labels)
if labels.ndim == 2:
# if the labels are one-hot vectors
num_classes = targets.size()[1]
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
return matcher
def _get_dp_dm(distances, targets, plabels, with_indices=False):
"""Returns the d+ and d- values for a batch of distances."""
matcher = _get_matcher(targets, plabels)
not_matcher = torch.bitwise_not(matcher)
inf = torch.full_like(distances, fill_value=float("inf"))
d_matching = torch.where(matcher, distances, inf)
d_unmatching = torch.where(not_matcher, distances, inf)
dp = torch.min(d_matching, dim=-1, keepdim=True)
dm = torch.min(d_unmatching, dim=-1, keepdim=True)
if with_indices:
return dp, dm
return dp.values, dm.values
# GLVQ
def glvq_loss(distances, target_labels, prototype_labels):
"""GLVQ loss function with support for one-hot labels."""
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
mu = (dp - dm) / (dp + dm)
return mu
def lvq1_loss(distances, target_labels, prototype_labels):
"""LVQ1 loss function with support for one-hot labels.
See Section 4 [Sado&Yamada]
https://papers.nips.cc/paper/1995/file/9c3b1830513cc3b8fc4b76635d32e692-Paper.pdf
"""
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
mu = dp
mu[dp > dm] = -dm[dp > dm]
return mu
def lvq21_loss(distances, target_labels, prototype_labels):
"""LVQ2.1 loss function with support for one-hot labels.
See Section 4 [Sado&Yamada]
https://papers.nips.cc/paper/1995/file/9c3b1830513cc3b8fc4b76635d32e692-Paper.pdf
"""
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
mu = dp - dm
return mu
# Probabilistic
def _get_class_probabilities(probabilities, targets, prototype_labels):
# Create Label Mapping
uniques = prototype_labels.unique(sorted=True).tolist()
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
target_indices = torch.LongTensor(list(map(key_val.get, targets.tolist())))
whole = probabilities.sum(dim=1)
correct = probabilities[torch.arange(len(probabilities)), target_indices]
wrong = whole - correct
return whole, correct, wrong
def nllr_loss(probabilities, targets, prototype_labels):
"""Compute the Negative Log-Likelihood Ratio loss."""
_, correct, wrong = _get_class_probabilities(probabilities, targets,
prototype_labels)
likelihood = correct / wrong
log_likelihood = torch.log(likelihood)
return -1.0 * log_likelihood
def rslvq_loss(probabilities, targets, prototype_labels):
"""Compute the Robust Soft Learning Vector Quantization (RSLVQ) loss."""
whole, correct, _ = _get_class_probabilities(probabilities, targets,
prototype_labels)
likelihood = correct / whole
log_likelihood = torch.log(likelihood)
return -1.0 * log_likelihood
def margin_loss(y_pred, y_true, margin=0.3):
"""Compute the margin loss."""
dp = torch.sum(y_true * y_pred, dim=-1)
dm = torch.max(y_pred - y_true, dim=-1).values
return torch.nn.functional.relu(dm - dp + margin)
class GLVQLoss(torch.nn.Module):
def __init__(self,
margin=0.0,
transfer_fn="identity",
beta=10,
add_dp=False,
**kwargs):
super().__init__(**kwargs)
self.margin = margin
self.transfer_fn = get_activation(transfer_fn)
self.beta = torch.tensor(beta)
self.add_dp = add_dp
def forward(self, outputs, targets, plabels):
# mu = glvq_loss(outputs, targets, plabels)
dp, dm = _get_dp_dm(outputs, targets, plabels)
mu = (dp - dm) / (dp + dm)
if self.add_dp:
mu = mu + dp
batch_loss = self.transfer_fn(mu + self.margin, beta=self.beta)
return batch_loss.sum()
class MarginLoss(torch.nn.modules.loss._Loss):
def __init__(self,
margin=0.3,
size_average=None,
reduce=None,
reduction="mean"):
super().__init__(size_average, reduce, reduction)
self.margin = margin
def forward(self, y_pred, y_true):
return margin_loss(y_pred, y_true, self.margin)
class NeuralGasEnergy(torch.nn.Module):
def __init__(self, lm, **kwargs):
super().__init__(**kwargs)
self.lm = lm
def forward(self, d):
order = torch.argsort(d, dim=1)
ranks = torch.argsort(order, dim=1)
cost = torch.sum(self._nghood_fn(ranks, self.lm) * d)
return cost, order
def extra_repr(self):
return f"lambda: {self.lm}"
@staticmethod
def _nghood_fn(rankings, lm):
return torch.exp(-rankings / lm)
class GrowingNeuralGasEnergy(NeuralGasEnergy):
def __init__(self, topology_layer, **kwargs):
super().__init__(**kwargs)
self.topology_layer = topology_layer
@staticmethod
def _nghood_fn(rankings, topology):
winner = rankings[:, 0]
weights = torch.zeros_like(rankings, dtype=torch.float)
weights[torch.arange(rankings.shape[0]), winner] = 1.0
neighbours = topology.get_neighbours(winner)
weights[neighbours] = 0.1
return weights

View File

@ -1,108 +0,0 @@
"""ProtoTorch pooling"""
from typing import Callable
import torch
def stratify_with(values: torch.Tensor,
labels: torch.LongTensor,
fn: Callable,
fill_value: float = 0.0) -> (torch.Tensor):
"""Apply an arbitrary stratification strategy on the columns on `values`.
The outputs correspond to sorted labels.
"""
clabels = torch.unique(labels, dim=0, sorted=True)
num_classes = clabels.size()[0]
if values.size()[1] == num_classes:
# skip if stratification is trivial
return values
batch_size = values.size()[0]
winning_values = torch.zeros(num_classes, batch_size, device=labels.device)
filler = torch.full_like(values.T, fill_value=fill_value)
for i, cl in enumerate(clabels):
matcher = torch.eq(labels.unsqueeze(dim=1), cl)
if labels.ndim == 2:
# if the labels are one-hot vectors
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
cdists = torch.where(matcher, values.T, filler).T
winning_values[i] = fn(cdists)
if labels.ndim == 2:
# Transpose to return with `batch_size` first and
# reverse the columns to fix the ordering of the classes
return torch.flip(winning_values.T, dims=(1, ))
return winning_values.T # return with `batch_size` first
def stratified_sum_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise sum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.sum(x, dim=1, keepdim=True).squeeze(),
fill_value=0.0)
return winning_values
def stratified_min_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise minimum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.min(x, dim=1, keepdim=True).values.squeeze(),
fill_value=float("inf"))
return winning_values
def stratified_max_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise maximum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.max(x, dim=1, keepdim=True).values.squeeze(),
fill_value=-1.0 * float("inf"))
return winning_values
def stratified_prod_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise maximum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.prod(x, dim=1, keepdim=True).squeeze(),
fill_value=1.0)
return winning_values
class StratifiedSumPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_sum_pooling` function."""
def forward(self, values, labels): # pylint: disable=no-self-use
return stratified_sum_pooling(values, labels)
class StratifiedProdPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_prod_pooling` function."""
def forward(self, values, labels): # pylint: disable=no-self-use
return stratified_prod_pooling(values, labels)
class StratifiedMinPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_min_pooling` function."""
def forward(self, values, labels): # pylint: disable=no-self-use
return stratified_min_pooling(values, labels)
class StratifiedMaxPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_max_pooling` function."""
def forward(self, values, labels): # pylint: disable=no-self-use
return stratified_max_pooling(values, labels)

View File

@ -1,31 +0,0 @@
"""ProtoTorch similarities."""
import torch
from .distances import euclidean_distance
def gaussian(x, variance=1.0):
return torch.exp(-(x * x) / (2 * variance))
def euclidean_similarity(x, y, variance=1.0):
distances = euclidean_distance(x, y)
similarities = gaussian(distances, variance)
return similarities
def cosine_similarity(x, y):
"""Compute the cosine similarity between :math:`x` and :math:`y`.
Expected dimension of x is 2.
Expected dimension of y is 2.
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
norm_x = x.pow(2).sum(1).sqrt()
norm_y = y.pow(2).sum(1).sqrt()
norm_mat = norm_x.unsqueeze(-1) @ norm_y.unsqueeze(-1).T
epsilon = torch.finfo(norm_mat.dtype).eps
norm_mat.clamp_(min=epsilon)
similarities = (x @ y.T) / norm_mat
return similarities

View File

@ -1,47 +0,0 @@
"""ProtoTorch transforms"""
import torch
from torch.nn.parameter import Parameter
from .initializers import (
AbstractLinearTransformInitializer,
EyeLinearTransformInitializer,
)
class LinearTransform(torch.nn.Module):
def __init__(
self,
in_dim: int,
out_dim: int,
initializer:
AbstractLinearTransformInitializer = EyeLinearTransformInitializer()):
super().__init__()
self.set_weights(in_dim, out_dim, initializer)
@property
def weights(self):
return self._weights.detach().cpu()
def _register_weights(self, weights):
self.register_parameter("_weights", Parameter(weights))
def set_weights(
self,
in_dim: int,
out_dim: int,
initializer:
AbstractLinearTransformInitializer = EyeLinearTransformInitializer()):
weights = initializer.generate(in_dim, out_dim)
self._register_weights(weights)
def forward(self, x):
return x @ self._weights
def extra_repr(self):
return f"weights: (shape: {tuple(self._weights.shape)})"
# Aliases
Omega = LinearTransform

View File

@ -1,13 +0,0 @@
"""ProtoTorch datasets"""
from .abstract import CSVDataset, NumpyDataset
from .sklearn import (
Blobs,
Circles,
Iris,
Moons,
Random,
)
from .spiral import Spiral
from .tecator import Tecator
from .xor import XOR

View File

@ -1,115 +0,0 @@
"""ProtoTorch abstract dataset classes
Based on `torchvision.VisionDataset` and `torchvision.MNIST`.
For the original code, see:
https://github.com/pytorch/vision/blob/master/torchvision/datasets/vision.py
https://github.com/pytorch/vision/blob/master/torchvision/datasets/mnist.py
"""
import os
import numpy as np
import torch
class Dataset(torch.utils.data.Dataset):
"""Abstract dataset class to be inherited."""
_repr_indent = 2
def __init__(self, root):
if isinstance(root, str):
root = os.path.expanduser(root)
self.root = root
def __getitem__(self, index):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
class ProtoDataset(Dataset):
"""Abstract dataset class to be inherited."""
training_file = "training.pt"
test_file = "test.pt"
def __init__(self, root="", train=True, download=True, verbose=True):
super().__init__(root)
self.train = train # training set or test set
self.verbose = verbose
if download:
self._download()
if not self._check_exists():
raise RuntimeError("Dataset not found. "
"You can use download=True to download it")
data_file = self.training_file if self.train else self.test_file
self.data, self.targets = torch.load(
os.path.join(self.processed_folder, data_file))
@property
def raw_folder(self):
return os.path.join(self.root, self.__class__.__name__, "raw")
@property
def processed_folder(self):
return os.path.join(self.root, self.__class__.__name__, "processed")
@property
def class_to_idx(self):
return {_class: i for i, _class in enumerate(self.classes)}
def _check_exists(self):
return os.path.exists(
os.path.join(
self.processed_folder, self.training_file)) and os.path.exists(
os.path.join(self.processed_folder, self.test_file))
def __repr__(self):
head = "Dataset " + self.__class__.__name__
body = ["Number of datapoints: {}".format(self.__len__())]
if self.root is not None:
body.append("Root location: {}".format(self.root))
body += self.extra_repr().splitlines()
lines = [head] + [" " * self._repr_indent + line for line in body]
return "\n".join(lines)
def extra_repr(self):
return f"Split: {'Train' if self.train is True else 'Test'}"
def __len__(self):
return len(self.data)
def _download(self):
raise NotImplementedError
class NumpyDataset(torch.utils.data.TensorDataset):
"""Create a PyTorch TensorDataset from NumPy arrays."""
def __init__(self, data, targets):
self.data = torch.Tensor(data)
self.targets = torch.LongTensor(targets)
tensors = [self.data, self.targets]
super().__init__(*tensors)
class CSVDataset(NumpyDataset):
"""Create a Dataset from a CSV file."""
def __init__(self, filepath, target_col=-1, delimiter=',', skip_header=0):
raw = np.genfromtxt(
filepath,
delimiter=delimiter,
skip_header=skip_header,
)
data = np.delete(raw, 1, target_col)
targets = raw[:, target_col]
super().__init__(data, targets)

View File

@ -1,165 +0,0 @@
"""Thin wrappers for a few scikit-learn datasets.
URL:
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
"""
from __future__ import annotations
import warnings
from typing import Sequence
from sklearn.datasets import (
load_iris,
make_blobs,
make_circles,
make_classification,
make_moons,
)
from prototorch.datasets.abstract import NumpyDataset
class Iris(NumpyDataset):
"""Iris Dataset by Ronald Fisher introduced in 1936.
The dataset contains four measurements from flowers of three species of iris.
.. list-table:: Iris
:header-rows: 1
* - dimensions
- classes
- training size
- validation size
- test size
* - 4
- 3
- 150
- 0
- 0
:param dims: select a subset of dimensions
"""
def __init__(self, dims: Sequence[int] | None = None):
x, y = load_iris(return_X_y=True)
if dims is not None:
x = x[:, dims]
super().__init__(x, y)
class Blobs(NumpyDataset):
"""Generate isotropic Gaussian blobs for clustering.
Read more at
https://scikit-learn.org/stable/datasets/sample_generators.html#sample-generators.
"""
def __init__(
self,
num_samples: int = 300,
num_features: int = 2,
seed: None | int = 0,
):
x, y = make_blobs(
num_samples,
num_features,
centers=None,
random_state=seed,
shuffle=False,
)
super().__init__(x, y)
class Random(NumpyDataset):
"""Generate a random n-class classification problem.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html.
Note: n_classes * n_clusters_per_class <= 2**n_informative must satisfy.
"""
def __init__(
self,
num_samples: int = 300,
num_features: int = 2,
num_classes: int = 2,
num_clusters: int = 2,
num_informative: None | int = None,
separation: float = 1.0,
seed: None | int = 0,
):
if not num_informative:
import math
num_informative = math.ceil(math.log2(num_classes * num_clusters))
if num_features < num_informative:
warnings.warn("Generating more features than requested.")
num_features = num_informative
x, y = make_classification(
num_samples,
num_features,
n_informative=num_informative,
n_redundant=0,
n_classes=num_classes,
n_clusters_per_class=num_clusters,
class_sep=separation,
random_state=seed,
shuffle=False,
)
super().__init__(x, y)
class Circles(NumpyDataset):
"""Make a large circle containing a smaller circle in 2D.
A simple toy dataset to visualize clustering and classification algorithms.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
"""
def __init__(
self,
num_samples: int = 300,
noise: float = 0.3,
factor: float = 0.8,
seed: None | int = 0,
):
x, y = make_circles(
num_samples,
noise=noise,
factor=factor,
random_state=seed,
shuffle=False,
)
super().__init__(x, y)
class Moons(NumpyDataset):
"""Make two interleaving half circles.
A simple toy dataset to visualize clustering and classification algorithms.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
"""
def __init__(
self,
num_samples: int = 300,
noise: float = 0.3,
seed: None | int = 0,
):
x, y = make_moons(
num_samples,
noise=noise,
random_state=seed,
shuffle=False,
)
super().__init__(x, y)

View File

@ -1,59 +0,0 @@
"""Spiral dataset for binary classification."""
import numpy as np
import torch
def make_spiral(num_samples=500, noise=0.3):
"""Generates the Spiral Dataset.
For use in Prototorch use `prototorch.datasets.Spiral` instead.
"""
def get_samples(n, delta_t):
points = []
for i in range(n):
r = i / num_samples * 5
t = 1.75 * i / n * 2 * np.pi + delta_t
x = r * np.sin(t) + np.random.rand(1) * noise
y = r * np.cos(t) + np.random.rand(1) * noise
points.append([x, y])
return points
n = num_samples // 2
positive = get_samples(n=n, delta_t=0)
negative = get_samples(n=n, delta_t=np.pi)
x = np.concatenate(
[np.array(positive).reshape(n, -1),
np.array(negative).reshape(n, -1)],
axis=0)
y = np.concatenate([np.zeros(n), np.ones(n)])
return x, y
class Spiral(torch.utils.data.TensorDataset):
"""Spiral dataset for binary classification.
This datasets consists of two spirals of two different classes.
.. list-table:: Spiral
:header-rows: 1
* - dimensions
- classes
- training size
- validation size
- test size
* - 2
- 2
- num_samples
- 0
- 0
:param num_samples: number of random samples
:param noise: noise added to the spirals
"""
def __init__(self, num_samples: int = 500, noise: float = 0.3):
x, y = make_spiral(num_samples, noise)
super().__init__(torch.Tensor(x), torch.LongTensor(y))

View File

@ -1,118 +0,0 @@
"""Tecator dataset for classification.
URL:
http://lib.stat.cmu.edu/datasets/tecator
LICENCE / TERMS / COPYRIGHT:
This is the Tecator data set: The task is to predict the fat content
of a meat sample on the basis of its near infrared absorbance spectrum.
-------------------------------------------------------------------------
1. Statement of permission from Tecator (the original data source)
These data are recorded on a Tecator Infratec Food and Feed Analyzer
working in the wavelength range 850 - 1050 nm by the Near Infrared
Transmission (NIT) principle. Each sample contains finely chopped pure
meat with different moisture, fat and protein contents.
If results from these data are used in a publication we want you to
mention the instrument and company name (Tecator) in the publication.
In addition, please send a preprint of your article to
Karin Thente, Tecator AB,
Box 70, S-263 21 Hoganas, Sweden
The data are available in the public domain with no responsability from
the original data source. The data can be redistributed as long as this
permission note is attached.
For more information about the instrument - call Perstorp Analytical's
representative in your area.
Description:
For each meat sample the data consists of a 100 channel spectrum of
absorbances and the contents of moisture (water), fat and protein.
The absorbance is -log10 of the transmittance
measured by the spectrometer. The three contents, measured in percent,
are determined by analytic chemistry.
"""
import logging
import os
import numpy as np
import torch
from torchvision.datasets.utils import download_file_from_google_drive
from prototorch.datasets.abstract import ProtoDataset
class Tecator(ProtoDataset):
"""
`Tecator Dataset <http://lib.stat.cmu.edu/datasets/tecator>`__ for classification.
The dataset contains wavelength measurements of meat.
.. list-table:: Tecator
:header-rows: 1
* - dimensions
- classes
- training size
- validation size
- test size
* - 100
- 2
- 129
- 43
- 43
"""
_resources = [
("1P9WIYnyxFPh6f1vqAbnKfK8oYmUgyV83",
"ba5607c580d0f91bb27dc29d13c2f8df"),
] # (google_storage_id, md5hash)
classes = ["0 - low_fat", "1 - high_fat"]
def __getitem__(self, index):
img, target = self.data[index], int(self.targets[index])
return img, target
def _download(self):
"""Download the data if it doesn't exist in already."""
if self._check_exists():
return
logging.debug("Making directories...")
os.makedirs(self.raw_folder, exist_ok=True)
os.makedirs(self.processed_folder, exist_ok=True)
logging.debug("Downloading...")
for fileid, md5 in self._resources:
filename = "tecator.npz"
download_file_from_google_drive(fileid,
root=self.raw_folder,
filename=filename,
md5=md5)
logging.debug("Processing...")
with np.load(os.path.join(self.raw_folder, "tecator.npz"),
allow_pickle=False) as f:
x_train, y_train = f["x_train"], f["y_train"]
x_test, y_test = f["x_test"], f["y_test"]
training_set = [
torch.Tensor(x_train),
torch.LongTensor(y_train),
]
test_set = [
torch.Tensor(x_test),
torch.LongTensor(y_test),
]
with open(os.path.join(self.processed_folder, self.training_file),
"wb") as f:
torch.save(training_set, f)
with open(os.path.join(self.processed_folder, self.test_file),
"wb") as f:
torch.save(test_set, f)
logging.debug("Done!")

View File

@ -1,19 +0,0 @@
"""Exclusive-or (XOR) dataset for binary classification."""
import torch
def make_xor(num_samples=500):
x = torch.rand(num_samples, 2)
y = torch.zeros(num_samples)
y[torch.logical_and(x[:, 0] > 0.5, x[:, 1] < 0.5)] = 1
y[torch.logical_and(x[:, 1] > 0.5, x[:, 0] < 0.5)] = 1
return x, y
class XOR(torch.utils.data.TensorDataset):
"""Exclusive-or (XOR) dataset for binary classification."""
def __init__(self, num_samples: int = 500):
x, y = make_xor(num_samples)
super().__init__(x, y)

View File

@ -0,0 +1,48 @@
"""ProtoTorch activation functions."""
import torch
ACTIVATIONS = dict()
def register_activation(func):
ACTIVATIONS[func.__name__] = func
return func
@register_activation
def identity(input, **kwargs):
""":math:`f(x) = x`"""
return input
@register_activation
def sigmoid_beta(input, beta=10):
""":math:`f(x) = \\frac{1}{1 + e^{-\\beta x}}`
Keyword Arguments:
beta (float): Parameter :math:`\\beta`
"""
out = torch.reciprocal(1.0 + torch.exp(-beta * input))
return out
@register_activation
def swish_beta(input, beta=10):
""":math:`f(x) = \\frac{x}{1 + e^{-\\beta x}}`
Keyword Arguments:
beta (float): Parameter :math:`\\beta`
"""
out = input * sigmoid_beta(input, beta=beta)
return out
def get_activation(funcname):
if callable(funcname):
return funcname
else:
if funcname in ACTIVATIONS:
return ACTIVATIONS.get(funcname)
else:
raise NameError(f'Activation {funcname} was not found.')

View File

@ -0,0 +1,15 @@
"""ProtoTorch competition functions."""
import torch
def wtac(distances, labels):
winning_indices = torch.min(distances, dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels
def knnc(distances, labels, k):
winning_indices = torch.topk(-distances, k=k, dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels

View File

@ -0,0 +1,78 @@
"""ProtoTorch distance functions."""
import torch
def squared_euclidean_distance(x, y):
"""Compute the squared Euclidean distance between :math:`x` and :math:`y`.
Expected dimension of x is 2.
Expected dimension of y is 2.
"""
expanded_x = x.unsqueeze(dim=1)
batchwise_difference = y - expanded_x
differences_raised = torch.pow(batchwise_difference, 2)
distances = torch.sum(differences_raised, axis=2)
return distances
def euclidean_distance(x, y):
"""Compute the Euclidean distance between :math:`x` and :math:`y`.
Expected dimension of x is 2.
Expected dimension of y is 2.
"""
distances_raised = squared_euclidean_distance(x, y)
distances = torch.sqrt(distances_raised)
return distances
def lpnorm_distance(x, y, p):
"""Compute :math:`{\\langle x, y \\rangle}_p`.
Expected dimension of x is 2.
Expected dimension of y is 2.
"""
# # DEPRECATED in favor of torch.cdist
# expanded_x = x.unsqueeze(dim=1)
# batchwise_difference = y - expanded_x
# differences_raised = torch.pow(batchwise_difference, p)
# distances_raised = torch.sum(differences_raised, axis=2)
# distances = torch.pow(distances_raised, 1.0 / p)
# return distances
distances = torch.cdist(x, y, p=p)
return distances
def omega_distance(x, y, omega):
"""Omega distance.
Compute :math:`{\\langle \\Omega x, \\Omega y \\rangle}_p`
Expected dimension of x is 2.
Expected dimension of y is 2.
Expected dimension of omega is 2.
"""
projected_x = x @ omega
projected_y = y @ omega
distances = squared_euclidean_distance(projected_x, projected_y)
return distances
def lomega_distance(x, y, omegas):
"""Localized Omega distance.
Compute :math:`{\\langle \\Omega_k x, \\Omega_k y_k \\rangle}_p`
Expected dimension of x is 2.
Expected dimension of y is 2.
Expected dimension of omegas is 3.
"""
projected_x = x @ omegas
projected_y = torch.diagonal(y @ omegas).T
expanded_y = torch.unsqueeze(projected_y, dim=1)
batchwise_difference = expanded_y - projected_x
differences_squared = batchwise_difference**2
distances = torch.sum(differences_squared, dim=2)
distances = distances.permute(1, 0)
return distances

View File

@ -0,0 +1,93 @@
"""ProtoTorch initialization functions."""
from itertools import chain
import torch
INITIALIZERS = dict()
def register_initializer(func):
INITIALIZERS[func.__name__] = func
return func
def labels_from(distribution):
"""Takes a distribution tensor and returns a labels tensor."""
nclasses = distribution.shape[0]
llist = [[i] * n for i, n in zip(range(nclasses), distribution)]
# labels = [l for cl in llist for l in cl] # flatten the list of lists
labels = list(chain(*llist)) # flatten using itertools.chain
return torch.tensor(labels, requires_grad=False)
@register_initializer
def ones(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.ones(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def zeros(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.zeros(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def rand(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.rand(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def randn(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.randn(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def stratified_mean(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
pdim = x_train.shape[1]
protos = torch.empty(nprotos, pdim)
plabels = labels_from(prototype_distribution)
for i, l in enumerate(plabels):
xl = x_train[y_train == l]
mean_xl = torch.mean(xl, dim=0)
protos[i] = mean_xl
return protos, plabels
@register_initializer
def stratified_random(x_train, y_train, prototype_distribution):
gen = torch.manual_seed(torch.initial_seed())
nprotos = torch.sum(prototype_distribution)
pdim = x_train.shape[1]
protos = torch.empty(nprotos, pdim)
plabels = labels_from(prototype_distribution)
for i, l in enumerate(plabels):
xl = x_train[y_train == l]
rand_index = torch.zeros(1).long().random_(0,
xl.shape[1] - 1,
generator=gen)
random_xl = xl[rand_index]
protos[i] = random_xl
return protos, plabels
def get_initializer(funcname):
if callable(funcname):
return funcname
else:
if funcname in INITIALIZERS:
return INITIALIZERS.get(funcname)
else:
raise NameError(f'Initializer {funcname} was not found.')

View File

@ -0,0 +1,25 @@
"""ProtoTorch loss functions."""
import torch
def glvq_loss(distances, target_labels, prototype_labels):
"""GLVQ loss function with support for one-hot labels."""
matcher = torch.eq(target_labels.unsqueeze(dim=1), prototype_labels)
if prototype_labels.ndim == 2:
# if the labels are one-hot vectors
nclasses = target_labels.size()[1]
matcher = torch.eq(torch.sum(matcher, dim=-1), nclasses)
not_matcher = torch.bitwise_not(matcher)
dplus_criterion = distances * matcher > 0.0
dminus_criterion = distances * not_matcher > 0.0
inf = torch.full_like(distances, fill_value=float('inf'))
distances_to_wpluses = torch.where(dplus_criterion, distances, inf)
distances_to_wminuses = torch.where(dminus_criterion, distances, inf)
dpluses = torch.min(distances_to_wpluses, dim=1, keepdim=True).values
dminuses = torch.min(distances_to_wminuses, dim=1, keepdim=True).values
mu = (dpluses - dminuses) / (dpluses + dminuses)
return mu

View File

View File

@ -0,0 +1,21 @@
"""ProtoTorch losses."""
import torch
from prototorch.functions.activations import get_activation
from prototorch.functions.losses import glvq_loss
class GLVQLoss(torch.nn.Module):
"""GLVQ Loss."""
def __init__(self, margin=0.0, squashing='identity', beta=10, **kwargs):
super().__init__(**kwargs)
self.margin = margin
self.squashing = get_activation(squashing)
self.beta = beta
def forward(self, outputs, targets):
distances, plabels = outputs
mu = glvq_loss(distances, targets, plabels)
batch_loss = self.squashing(mu + self.margin, beta=self.beta)
return torch.sum(batch_loss, dim=0)

View File

@ -0,0 +1,57 @@
"""ProtoTorch prototype modules."""
import torch
from prototorch.functions.initializers import get_initializer
class AddPrototypes1D(torch.nn.Module):
def __init__(self,
prototypes_per_class=1,
prototype_distribution=None,
prototype_initializer='ones',
data=None,
**kwargs):
if data is None:
if 'input_dim' not in kwargs:
raise NameError('`input_dim` required if '
'no `data` is provided.')
if prototype_distribution is not None:
nclasses = sum(prototype_distribution)
else:
if 'nclasses' not in kwargs:
raise NameError('`prototype_distribution` required if '
'both `data` and `nclasses` are not '
'provided.')
nclasses = kwargs.pop('nclasses')
input_dim = kwargs.pop('input_dim')
# input_shape = (input_dim, )
x_train = torch.rand(nclasses, input_dim)
y_train = torch.arange(nclasses)
else:
x_train, y_train = data
x_train = torch.as_tensor(x_train)
y_train = torch.as_tensor(y_train)
super().__init__(**kwargs)
self.prototypes_per_class = prototypes_per_class
with torch.no_grad():
if not prototype_distribution:
num_classes = torch.unique(y_train).shape[0]
self.prototype_distribution = torch.tensor(
[self.prototypes_per_class] * num_classes)
else:
self.prototype_distribution = torch.tensor(
prototype_distribution)
self.prototype_initializer = get_initializer(prototype_initializer)
prototypes, prototype_labels = self.prototype_initializer(
x_train,
y_train,
prototype_distribution=self.prototype_distribution)
self.prototypes = torch.nn.Parameter(prototypes)
self.prototype_labels = prototype_labels
def forward(self):
return self.prototypes, self.prototype_labels

View File

@ -1,4 +0,0 @@
"""ProtoTorch Neural Network Module"""
from .activations import *
from .wrappers import *

View File

@ -1,66 +0,0 @@
"""ProtoTorch activations"""
import torch
ACTIVATIONS = dict()
def register_activation(fn):
"""Add the activation function to the registry."""
name = fn.__name__
ACTIVATIONS[name] = fn
return fn
@register_activation
def identity(x, beta=0.0):
"""Identity activation function.
Definition:
:math:`f(x) = x`
Keyword Arguments:
beta (`float`): Ignored.
"""
return x
@register_activation
def sigmoid_beta(x, beta=10.0):
r"""Sigmoid activation function with scaling.
Definition:
:math:`f(x) = \frac{1}{1 + e^{-\beta x}}`
Keyword Arguments:
beta (`float`): Scaling parameter :math:`\beta`
"""
out = 1.0 / (1.0 + torch.exp(-1.0 * beta * x))
return out
@register_activation
def swish_beta(x, beta=10.0):
r"""Swish activation function with scaling.
Definition:
:math:`f(x) = \frac{x}{1 + e^{-\beta x}}`
Keyword Arguments:
beta (`float`): Scaling parameter :math:`\beta`
"""
out = x * sigmoid_beta(x, beta=beta)
return out
def get_activation(funcname):
"""Deserialize the activation function."""
if callable(funcname):
return funcname
elif funcname in ACTIVATIONS:
return ACTIVATIONS.get(funcname)
else:
emsg = f"Unable to find matching function for `{funcname}` " \
f"in `prototorch.nn.activations`. "
helpmsg = f"Possible values are {list(ACTIVATIONS.keys())}."
raise NameError(emsg + helpmsg)

View File

@ -1,38 +0,0 @@
"""ProtoTorch wrappers."""
import torch
class LambdaLayer(torch.nn.Module):
def __init__(self, fn, name=None):
super().__init__()
self.fn = fn
self.name = name or fn.__name__ # lambda fns get <lambda>
def forward(self, *args, **kwargs):
return self.fn(*args, **kwargs)
def extra_repr(self):
return self.name
class LossLayer(torch.nn.modules.loss._Loss):
def __init__(self,
fn,
name=None,
size_average=None,
reduce=None,
reduction: str = "mean") -> None:
super().__init__(size_average=size_average,
reduce=reduce,
reduction=reduction)
self.fn = fn
self.name = name or fn.__name__ # lambda fns get <lambda>
def forward(self, *args, **kwargs):
return self.fn(*args, **kwargs)
def extra_repr(self):
return self.name

View File

@ -1,13 +0,0 @@
"""ProtoTorch utils module"""
from .colors import (
get_colors,
get_legend_handles,
hex_to_rgb,
rgb_to_hex,
)
from .utils import (
mesh2d,
parse_data_arg,
parse_distribution,
)

View File

@ -1,60 +0,0 @@
"""ProtoTorch color utilities"""
import matplotlib.lines as mlines
import torch
from matplotlib import cm
from matplotlib.colors import (
Normalize,
to_hex,
to_rgb,
)
def hex_to_rgb(hex_values):
for v in hex_values:
v = v.lstrip('#')
lv = len(v)
c = [int(v[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)]
yield c
def rgb_to_hex(rgb_values):
for v in rgb_values:
c = "%02x%02x%02x" % tuple(v)
yield c
def get_colors(vmax, vmin=0, cmap="viridis"):
cmap = cm.get_cmap(cmap)
colornorm = Normalize(vmin=vmin, vmax=vmax)
colors = dict()
for c in range(vmin, vmax + 1):
colors[c] = to_hex(cmap(colornorm(c)))
return colors
def get_legend_handles(colors, labels, marker="dots", zero_indexed=False):
handles = list()
for color, label in zip(colors.values(), labels):
if marker == "dots":
handle = mlines.Line2D(
xdata=[],
ydata=[],
label=label,
color="white",
markerfacecolor=color,
marker="o",
markersize=10,
markeredgecolor="k",
)
else:
handle = mlines.Line2D(
xdata=[],
ydata=[],
label=label,
color=color,
marker="",
markersize=15,
)
handles.append(handle)
return handles

View File

@ -1,136 +0,0 @@
"""ProtoTorch utilities"""
import warnings
from typing import (
Dict,
Iterable,
List,
Optional,
Union,
)
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
def generate_mesh(
minima: torch.TensorType,
maxima: torch.TensorType,
border: float = 1.0,
resolution: int = 100,
device: Optional[torch.device] = None,
):
# Apply Border
ptp = maxima - minima
shift = border * ptp
minima -= shift
maxima += shift
# Generate Mesh
minima = minima.to(device).unsqueeze(1)
maxima = maxima.to(device).unsqueeze(1)
factors = torch.linspace(0, 1, resolution, device=device)
marginals = factors * maxima + ((1 - factors) * minima)
single_dimensions = torch.meshgrid(*marginals)
mesh_input = torch.stack([dim.ravel() for dim in single_dimensions], dim=1)
return mesh_input, single_dimensions
def mesh2d(x=None, border: float = 1.0, resolution: int = 100):
if x is not None:
x_shift = border * np.ptp(x[:, 0])
y_shift = border * np.ptp(x[:, 1])
x_min, x_max = x[:, 0].min() - x_shift, x[:, 0].max() + x_shift
y_min, y_max = x[:, 1].min() - y_shift, x[:, 1].max() + y_shift
else:
x_min, x_max = -border, border
y_min, y_max = -border, border
xx, yy = np.meshgrid(np.linspace(x_min, x_max, resolution),
np.linspace(y_min, y_max, resolution))
mesh = np.c_[xx.ravel(), yy.ravel()]
return mesh, xx, yy
def distribution_from_list(list_dist: List[int],
clabels: Optional[Iterable[int]] = None):
clabels = clabels or list(range(len(list_dist)))
distribution = dict(zip(clabels, list_dist))
return distribution
def parse_distribution(
user_distribution,
clabels: Optional[Iterable[int]] = None) -> Dict[int, int]:
"""Parse user-provided distribution.
Return a dictionary with integer keys that represent the class labels and
values that denote the number of components/prototypes with that class
label.
The argument `user_distribution` could be any one of a number of allowed
formats. If it is a Python list, it is assumed that there are as many
entries in this list as there are classes, and the value at each index of
this list describes the number of prototypes for that particular class. So,
[1, 1, 1] implies that we have three classes with one prototype per class.
If it is a Python tuple, a shorthand of (num_classes, prototypes_per_class)
is assumed. If it is a Python dictionary, the key-value pairs describe the
class label and the number of prototypes for that class respectively. So,
{0: 2, 1: 2, 2: 2} implies that we have three classes with labels {1, 2,
3}, each equipped with two prototypes. If however, the dictionary contains
the keys "num_classes" and "per_class", they are parsed to use their values
as one might expect.
"""
if isinstance(user_distribution, dict):
if "num_classes" in user_distribution.keys():
num_classes = int(user_distribution["num_classes"])
per_class = int(user_distribution["per_class"])
return distribution_from_list([per_class] * num_classes, clabels)
else:
return user_distribution
elif isinstance(user_distribution, tuple):
assert len(user_distribution) == 2
num_classes, per_class = user_distribution
num_classes, per_class = int(num_classes), int(per_class)
return distribution_from_list([per_class] * num_classes, clabels)
elif isinstance(user_distribution, list):
return distribution_from_list(user_distribution, clabels)
else:
msg = f"`distribution` was not understood." \
f"You have provided: {user_distribution}."
raise ValueError(msg)
def parse_data_arg(data_arg: Union[Dataset, DataLoader, list, tuple]):
"""Return data and target as torch tensors."""
if isinstance(data_arg, Dataset):
if hasattr(data_arg, "__len__"):
ds_size = len(data_arg) # type: ignore
loader = DataLoader(data_arg, batch_size=ds_size)
data, targets = next(iter(loader))
else:
emsg = f"Dataset {data_arg} is not sized (`__len__` unimplemented)."
raise TypeError(emsg)
elif isinstance(data_arg, DataLoader):
data = torch.tensor([])
targets = torch.tensor([])
for x, y in data_arg:
data = torch.cat([data, x])
targets = torch.cat([targets, y])
else:
assert len(data_arg) == 2
data, targets = data_arg
if not isinstance(data, torch.Tensor):
wmsg = f"Converting data to {torch.Tensor}..."
warnings.warn(wmsg)
data = torch.Tensor(data)
if not isinstance(targets, torch.LongTensor):
wmsg = f"Converting targets to {torch.LongTensor}..."
warnings.warn(wmsg)
targets = torch.LongTensor(targets)
return data, targets

View File

@ -1,16 +0,0 @@
[pylint]
disable =
too-many-arguments,
too-few-public-methods,
fixme,
[pycodestyle]
max-line-length = 79
[isort]
multi_line_output = 3
include_trailing_comma = True
force_grid_wrap = 3
use_parentheses = True
line_length = 79

120
setup.py
View File

@ -1,95 +1,49 @@
"""
"""Install ProtoTorch."""
######
# # ##### #### ##### #### ##### #### ##### #### # #
# # # # # # # # # # # # # # # # # #
###### # # # # # # # # # # # # # ######
# ##### # # # # # # # # ##### # # #
# # # # # # # # # # # # # # # # #
# # # #### # #### # #### # # #### # #
from setuptools import setup
from setuptools import find_packages
ProtoTorch Core Package
"""
from setuptools import find_packages, setup
PROJECT_URL = 'https://github.com/si-cim/prototorch'
DOWNLOAD_URL = 'https://github.com/si-cim/prototorch.git'
PROJECT_URL = "https://github.com/si-cim/prototorch"
DOWNLOAD_URL = "https://github.com/si-cim/prototorch.git"
with open("README.md", encoding="utf-8") as fh:
with open('README.md', 'r') as fh:
long_description = fh.read()
INSTALL_REQUIRES = [
"torch>=2.0.0",
"torchvision",
"numpy",
"scikit-learn",
"matplotlib",
]
DATASETS = [
"requests",
"tqdm",
]
DEV = [
"bump2version",
"pre-commit",
]
DOCS = [
"recommonmark",
"sphinx",
"sphinx_rtd_theme",
"sphinxcontrib-katex",
"sphinx-autodoc-typehints",
]
EXAMPLES = [
"torchinfo",
]
TESTS = [
"flake8",
"pytest",
]
ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
setup(
name="prototorch",
version="0.7.6",
description="Highly extensible, GPU-supported "
"Learning Vector Quantization (LVQ) toolbox "
"built using PyTorch and its nn API.",
setup(name='prototorch',
version='0.1.0-dev0',
description='Highly extensible, GPU-supported '
'Learning Vector Quantization (LVQ) toolbox '
'built using PyTorch and its nn API.',
long_description=long_description,
long_description_content_type="text/markdown",
author="Jensun Ravichandran",
author_email="jjensun@gmail.com",
long_description_content_type='text/markdown',
author='Jensun Ravichandran',
author_email='jjensun@gmail.com',
url=PROJECT_URL,
download_url=DOWNLOAD_URL,
license="MIT",
python_requires=">=3.8",
install_requires=INSTALL_REQUIRES,
license='MIT',
install_requires=[
'torch>=1.3.1',
'torchvision>=0.5.0',
'numpy>=1.9.1',
],
extras_require={
"datasets": DATASETS,
"dev": DEV,
"docs": DOCS,
"examples": EXAMPLES,
"tests": TESTS,
"all": ALL,
'examples': [
'sklearn',
'matplotlib',
],
'tests': ['pytest'],
},
classifiers=[
"Environment :: Console",
"Natural Language :: English",
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
'Development Status :: 2 - Pre-Alpha', 'Environment :: Console',
'Intended Audience :: Developers', 'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Operating System :: OS Independent',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules'
],
packages=find_packages(),
zip_safe=False,
)
packages=find_packages())

View File

@ -1,777 +0,0 @@
"""ProtoTorch core test suite"""
import unittest
import numpy as np
import pytest
import torch
import prototorch as pt
from prototorch.utils import parse_distribution
# Utils
def test_parse_distribution_dict_0():
distribution = {"num_classes": 1, "per_class": 0}
distribution = parse_distribution(distribution)
assert distribution == {0: 0}
def test_parse_distribution_dict_1():
distribution = dict(num_classes=3, per_class=2)
distribution = parse_distribution(distribution)
assert distribution == {0: 2, 1: 2, 2: 2}
def test_parse_distribution_dict_2():
distribution = {0: 1, 2: 2, -1: 3}
distribution = parse_distribution(distribution)
assert distribution == {0: 1, 2: 2, -1: 3}
def test_parse_distribution_tuple():
distribution = (2, 3)
distribution = parse_distribution(distribution)
assert distribution == {0: 3, 1: 3}
def test_parse_distribution_list():
distribution = [1, 1, 0, 2]
distribution = parse_distribution(distribution)
assert distribution == {0: 1, 1: 1, 2: 0, 3: 2}
def test_parse_distribution_custom_labels():
distribution = [1, 1, 0, 2]
clabels = [1, 2, 5, 3]
distribution = parse_distribution(distribution, clabels)
assert distribution == {1: 1, 2: 1, 5: 0, 3: 2}
# Components initializers
def test_literal_comp_generate():
protos = torch.rand(4, 3, 5, 5)
c = pt.initializers.LiteralCompInitializer(protos)
components = c.generate([])
assert torch.allclose(components, protos)
def test_literal_comp_generate_from_list():
protos = [[0, 1], [2, 3], [4, 5]]
c = pt.initializers.LiteralCompInitializer(protos)
with pytest.warns(UserWarning):
components = c.generate([])
assert torch.allclose(components, torch.Tensor(protos))
def test_shape_aware_raises_error():
with pytest.raises(TypeError):
_ = pt.initializers.ShapeAwareCompInitializer(shape=(2, ))
def test_data_aware_comp_generate():
protos = torch.rand(4, 3, 5, 5)
c = pt.initializers.DataAwareCompInitializer(protos)
components = c.generate(num_components="IgnoreMe!")
assert torch.allclose(components, protos)
def test_class_aware_comp_generate():
protos = torch.rand(4, 2, 3, 5, 5)
plabels = torch.tensor([0, 0, 1, 1]).long()
c = pt.initializers.ClassAwareCompInitializer([protos, plabels])
components = c.generate(distribution=[])
assert torch.allclose(components, protos)
def test_zeros_comp_generate():
shape = (3, 5, 5)
c = pt.initializers.ZerosCompInitializer(shape)
components = c.generate(num_components=4)
assert torch.allclose(components, torch.zeros(4, 3, 5, 5))
def test_ones_comp_generate():
c = pt.initializers.OnesCompInitializer(2)
components = c.generate(num_components=3)
assert torch.allclose(components, torch.ones(3, 2))
def test_fill_value_comp_generate():
c = pt.initializers.FillValueCompInitializer(2, 0.0)
components = c.generate(num_components=3)
assert torch.allclose(components, torch.zeros(3, 2))
def test_uniform_comp_generate_min_max_bound():
c = pt.initializers.UniformCompInitializer(2, -1.0, 1.0)
components = c.generate(num_components=1024)
assert components.min() >= -1.0
assert components.max() <= 1.0
def test_random_comp_generate_mean():
c = pt.initializers.RandomNormalCompInitializer(2, -1.0)
components = c.generate(num_components=1024)
assert torch.allclose(components.mean(),
torch.tensor(-1.0),
rtol=1e-05,
atol=1e-01)
def test_comp_generate_0_components():
c = pt.initializers.ZerosCompInitializer(2)
_ = c.generate(num_components=0)
def test_stratified_mean_comp_generate():
# yapf: disable
x = torch.Tensor(
[[0, -1, -2],
[10, 11, 12],
[0, 0, 0],
[2, 2, 2]])
y = torch.LongTensor([0, 0, 1, 1])
desired = torch.Tensor(
[[5.0, 5.0, 5.0],
[1.0, 1.0, 1.0]])
# yapf: enable
c = pt.initializers.StratifiedMeanCompInitializer(data=[x, y])
actual = c.generate([1, 1])
assert torch.allclose(actual, desired)
def test_stratified_selection_comp_generate():
# yapf: disable
x = torch.Tensor(
[[0, 0, 0],
[1, 1, 1],
[0, 0, 0],
[1, 1, 1]])
y = torch.LongTensor([0, 1, 0, 1])
desired = torch.Tensor(
[[0, 0, 0],
[1, 1, 1]])
# yapf: enable
c = pt.initializers.StratifiedSelectionCompInitializer(data=[x, y])
actual = c.generate([1, 1])
assert torch.allclose(actual, desired)
# Labels initializers
def test_literal_labels_init():
l = pt.initializers.LiteralLabelsInitializer([0, 0, 1, 2])
with pytest.warns(UserWarning):
labels = l.generate([])
assert torch.allclose(labels, torch.LongTensor([0, 0, 1, 2]))
def test_labels_init_from_list():
l = pt.initializers.LabelsInitializer()
components = l.generate(distribution=[1, 1, 1])
assert torch.allclose(components, torch.LongTensor([0, 1, 2]))
def test_labels_init_from_tuple_legal():
l = pt.initializers.LabelsInitializer()
components = l.generate(distribution=(3, 1))
assert torch.allclose(components, torch.LongTensor([0, 1, 2]))
def test_labels_init_from_tuple_illegal():
l = pt.initializers.LabelsInitializer()
with pytest.raises(AssertionError):
_ = l.generate(distribution=(1, 1, 1))
def test_data_aware_labels_init():
data, targets = [0, 1, 2, 3], [0, 0, 1, 1]
ds = pt.datasets.NumpyDataset(data, targets)
l = pt.initializers.DataAwareLabelsInitializer(ds)
labels = l.generate([])
assert torch.allclose(labels, torch.LongTensor(targets))
# Reasonings initializers
def test_literal_reasonings_init():
r = pt.initializers.LiteralReasoningsInitializer([0, 0, 1, 2])
with pytest.warns(UserWarning):
reasonings = r.generate([])
assert torch.allclose(reasonings, torch.Tensor([0, 0, 1, 2]))
def test_random_reasonings_init():
r = pt.initializers.RandomReasoningsInitializer(0.2, 0.8)
reasonings = r.generate(distribution=[0, 1])
assert torch.numel(reasonings) == 1 * 2 * 2
assert reasonings.min() >= 0.2
assert reasonings.max() <= 0.8
def test_zeros_reasonings_init():
r = pt.initializers.ZerosReasoningsInitializer()
reasonings = r.generate(distribution=[0, 1])
assert torch.allclose(reasonings, torch.zeros(1, 2, 2))
def test_ones_reasonings_init():
r = pt.initializers.ZerosReasoningsInitializer()
reasonings = r.generate(distribution=[1, 2, 3])
assert torch.allclose(reasonings, torch.zeros(6, 3, 2))
def test_pure_positive_reasonings_init_one_per_class():
r = pt.initializers.PurePositiveReasoningsInitializer(
components_first=False)
reasonings = r.generate(distribution=(4, 1))
assert torch.allclose(reasonings[0], torch.eye(4))
def test_pure_positive_reasonings_init_unrepresented_classes():
r = pt.initializers.PurePositiveReasoningsInitializer()
reasonings = r.generate(distribution=[9, 0, 0, 0])
assert reasonings.shape[0] == 9
assert reasonings.shape[1] == 4
assert reasonings.shape[2] == 2
def test_random_reasonings_init_channels_not_first():
r = pt.initializers.RandomReasoningsInitializer(components_first=False)
reasonings = r.generate(distribution=[0, 0, 0, 1])
assert reasonings.shape[0] == 2
assert reasonings.shape[1] == 4
assert reasonings.shape[2] == 1
# Transform initializers
def test_eye_transform_init_square():
t = pt.initializers.EyeLinearTransformInitializer()
I = t.generate(3, 3)
assert torch.allclose(I, torch.eye(3))
def test_eye_transform_init_narrow():
t = pt.initializers.EyeLinearTransformInitializer()
actual = t.generate(3, 2)
desired = torch.Tensor([[1, 0], [0, 1], [0, 0]])
assert torch.allclose(actual, desired)
def test_eye_transform_init_wide():
t = pt.initializers.EyeLinearTransformInitializer()
actual = t.generate(2, 3)
desired = torch.Tensor([[1, 0, 0], [0, 1, 0]])
assert torch.allclose(actual, desired)
# Transforms
def test_linear_transform_default_eye_init():
l = pt.transforms.LinearTransform(2, 4)
actual = l.weights
desired = torch.Tensor([[1, 0, 0, 0], [0, 1, 0, 0]])
assert torch.allclose(actual, desired)
def test_linear_transform_forward():
l = pt.transforms.LinearTransform(4, 2)
actual_weights = l.weights
desired_weights = torch.Tensor([[1, 0], [0, 1], [0, 0], [0, 0]])
assert torch.allclose(actual_weights, desired_weights)
actual_outputs = l(torch.Tensor([[1.1, 2.2, 3.3, 4.4], \
[1.1, 2.2, 3.3, 4.4], \
[5.5, 6.6, 7.7, 8.8]]))
desired_outputs = torch.Tensor([[1.1, 2.2], [1.1, 2.2], [5.5, 6.6]])
assert torch.allclose(actual_outputs, desired_outputs)
def test_linear_transform_zeros_init():
l = pt.transforms.LinearTransform(
in_dim=2,
out_dim=4,
initializer=pt.initializers.ZerosLinearTransformInitializer(),
)
actual = l.weights
desired = torch.zeros(2, 4)
assert torch.allclose(actual, desired)
def test_linear_transform_out_dim_first():
l = pt.transforms.LinearTransform(
in_dim=2,
out_dim=4,
initializer=pt.initializers.OLTI(out_dim_first=True),
)
assert l.weights.shape[0] == 4
assert l.weights.shape[1] == 2
# Components
def test_components_no_initializer():
with pytest.raises(TypeError):
_ = pt.components.Components(3, None)
def test_components_no_num_components():
with pytest.raises(TypeError):
_ = pt.components.Components(initializer=pt.initializers.OCI(2))
def test_components_none_num_components():
with pytest.raises(TypeError):
_ = pt.components.Components(None, initializer=pt.initializers.OCI(2))
def test_components_no_args():
with pytest.raises(TypeError):
_ = pt.components.Components()
def test_components_zeros_init():
c = pt.components.Components(3, pt.initializers.ZCI(2))
assert torch.allclose(c.components, torch.zeros(3, 2))
def test_labeled_components_dict_init():
c = pt.components.LabeledComponents({0: 3}, pt.initializers.OCI(2))
assert torch.allclose(c.components, torch.ones(3, 2))
assert torch.allclose(c.labels, torch.zeros(3, dtype=torch.long))
def test_labeled_components_list_init():
c = pt.components.LabeledComponents([3], pt.initializers.OCI(2))
assert torch.allclose(c.components, torch.ones(3, 2))
assert torch.allclose(c.labels, torch.zeros(3, dtype=torch.long))
def test_labeled_components_tuple_init():
c = pt.components.LabeledComponents({0: 1, 1: 2}, pt.initializers.OCI(2))
assert torch.allclose(c.components, torch.ones(3, 2))
assert torch.allclose(c.labels, torch.LongTensor([0, 1, 1]))
# Labels
def test_standalone_labels_dict_init():
l = pt.components.Labels({0: 3})
assert torch.allclose(l.labels, torch.zeros(3, dtype=torch.long))
def test_standalone_labels_list_init():
l = pt.components.Labels([3])
assert torch.allclose(l.labels, torch.zeros(3, dtype=torch.long))
def test_standalone_labels_tuple_init():
l = pt.components.Labels({0: 1, 1: 2})
assert torch.allclose(l.labels, torch.LongTensor([0, 1, 1]))
# Losses
def test_glvq_loss_int_labels():
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([0, 1])
targets = torch.ones(100)
batch_loss = pt.losses.glvq_loss(distances=d,
target_labels=targets,
prototype_labels=labels)
loss_value = torch.sum(batch_loss, dim=0)
assert loss_value == -100
def test_glvq_loss_one_hot_labels():
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([[0, 1], [1, 0]])
wl = torch.tensor([1, 0])
targets = torch.stack([wl for _ in range(100)], dim=0)
batch_loss = pt.losses.glvq_loss(distances=d,
target_labels=targets,
prototype_labels=labels)
loss_value = torch.sum(batch_loss, dim=0)
assert loss_value == -100
def test_glvq_loss_one_hot_unequal():
dlist = [torch.ones(100), torch.zeros(100), torch.zeros(100)]
d = torch.stack(dlist, dim=1)
labels = torch.tensor([[0, 1], [1, 0], [1, 0]])
wl = torch.tensor([1, 0])
targets = torch.stack([wl for _ in range(100)], dim=0)
batch_loss = pt.losses.glvq_loss(distances=d,
target_labels=targets,
prototype_labels=labels)
loss_value = torch.sum(batch_loss, dim=0)
assert loss_value == -100
# Activations
class TestActivations(unittest.TestCase):
def setUp(self):
self.flist = ["identity", "sigmoid_beta", "swish_beta"]
self.x = torch.randn(1024, 1)
def test_registry(self):
self.assertIsNotNone(pt.nn.ACTIVATIONS)
def test_funcname_deserialization(self):
for funcname in self.flist:
f = pt.nn.get_activation(funcname)
iscallable = callable(f)
self.assertTrue(iscallable)
def test_callable_deserialization(self):
def dummy(x, **kwargs):
return x
for f in [dummy, lambda x: x]:
f = pt.nn.get_activation(f)
iscallable = callable(f)
self.assertTrue(iscallable)
self.assertEqual(1, f(1))
def test_unknown_deserialization(self):
for funcname in ["blubb", "foobar"]:
with self.assertRaises(NameError):
_ = pt.nn.get_activation(funcname)
def test_identity(self):
actual = pt.nn.identity(self.x)
desired = self.x
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_sigmoid_beta1(self):
actual = pt.nn.sigmoid_beta(self.x, beta=1.0)
desired = torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_swish_beta1(self):
actual = pt.nn.swish_beta(self.x, beta=1.0)
desired = self.x * torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x
# Competitions
class TestCompetitions(unittest.TestCase):
def setUp(self):
pass
def test_wtac(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3])
competition_layer = pt.competitions.WTAC()
actual = competition_layer(d, labels)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_wtac_unequal_dist(self):
d = torch.tensor([[2.0, 3.0, 4.0], [2.0, 3.0, 1.0]])
labels = torch.tensor([0, 1, 1])
competition_layer = pt.competitions.WTAC()
actual = competition_layer(d, labels)
desired = torch.tensor([0, 1])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_wtac_one_hot(self):
d = torch.tensor([[1.99, 3.01], [3.0, 2.01]])
labels = torch.tensor([[0, 1], [1, 0]])
competition_layer = pt.competitions.WTAC()
actual = competition_layer(d, labels)
desired = torch.tensor([[0, 1], [1, 0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_knnc_k1(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3])
competition_layer = pt.competitions.KNNC(k=1)
actual = competition_layer(d, labels)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
pass
# Pooling
class TestPooling(unittest.TestCase):
def setUp(self):
pass
def test_stratified_min(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
pooling_layer = pt.pooling.StratifiedMinPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_min_one_hot(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
labels = torch.eye(3)[labels]
pooling_layer = pt.pooling.StratifiedMinPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_min_trivial(self):
d = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0, 1]])
labels = torch.tensor([0, 1, 2])
pooling_layer = pt.pooling.StratifiedMinPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_max(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 3, 2, 0])
pooling_layer = pt.pooling.StratifiedMaxPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[9.0, 3.0, 2.0], [9.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_max_one_hot(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 2, 1, 0])
labels = torch.nn.functional.one_hot(labels, num_classes=3)
pooling_layer = pt.pooling.StratifiedMaxPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[9.0, 3.0, 2.0], [9.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_sum(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.LongTensor([0, 0, 1, 2])
pooling_layer = pt.pooling.StratifiedSumPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[1.0, 2.0, 3.0], [17.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_sum_one_hot(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
labels = torch.eye(3)[labels]
pooling_layer = pt.pooling.StratifiedSumPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[1.0, 2.0, 3.0], [17.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_prod(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 3, 2, 0])
pooling_layer = pt.pooling.StratifiedProdPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[0.0, 3.0, 2.0], [504.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
pass
# Distances
class TestDistances(unittest.TestCase):
def setUp(self):
self.nx, self.mx = 32, 2048
self.ny, self.my = 8, 2048
self.x = torch.randn(self.nx, self.mx)
self.y = torch.randn(self.ny, self.my)
def test_manhattan(self):
actual = pt.distances.lpnorm_distance(self.x, self.y, p=1)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=1,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_euclidean(self):
actual = pt.distances.euclidean_distance(self.x, self.y)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=3)
self.assertIsNone(mismatch)
def test_squared_euclidean(self):
actual = pt.distances.squared_euclidean_distance(self.x, self.y)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = (torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_lpnorm_p0(self):
actual = pt.distances.lpnorm_distance(self.x, self.y, p=0)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=0,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_p2(self):
actual = pt.distances.lpnorm_distance(self.x, self.y, p=2)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_p3(self):
actual = pt.distances.lpnorm_distance(self.x, self.y, p=3)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=3,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_pinf(self):
actual = pt.distances.lpnorm_distance(self.x, self.y, p=float("inf"))
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=float("inf"),
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_omega_identity(self):
omega = torch.eye(self.mx, self.my)
actual = pt.distances.omega_distance(self.x, self.y, omega=omega)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = (torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_lomega_identity(self):
omega = torch.eye(self.mx, self.my)
omegas = torch.stack([omega for _ in range(self.ny)], dim=0)
actual = pt.distances.lomega_distance(self.x, self.y, omegas=omegas)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = (torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x, self.y

View File

@ -1,186 +0,0 @@
"""ProtoTorch datasets test suite"""
import os
import unittest
import numpy as np
import torch
import prototorch as pt
from prototorch.datasets.abstract import Dataset, ProtoDataset
class TestAbstract(unittest.TestCase):
def setUp(self):
self.ds = Dataset("./artifacts")
def test_getitem(self):
with self.assertRaises(NotImplementedError):
_ = self.ds[0]
def test_len(self):
with self.assertRaises(NotImplementedError):
_ = len(self.ds)
def tearDown(self):
del self.ds
class TestProtoDataset(unittest.TestCase):
def test_download(self):
with self.assertRaises(NotImplementedError):
_ = ProtoDataset("./artifacts", download=True)
def test_exists(self):
with self.assertRaises(RuntimeError):
_ = ProtoDataset("./artifacts", download=False)
class TestNumpyDataset(unittest.TestCase):
def test_list_init(self):
ds = pt.datasets.NumpyDataset([1], [1])
self.assertEqual(len(ds), 1)
def test_numpy_init(self):
data = np.random.randn(3, 2)
targets = np.array([0, 1, 2])
ds = pt.datasets.NumpyDataset(data, targets)
self.assertEqual(len(ds), 3)
class TestCSVDataset(unittest.TestCase):
def setUp(self):
data = np.random.rand(100, 4)
targets = np.random.randint(2, size=(100, 1))
arr = np.hstack([data, targets])
if not os.path.exists("./artifacts"):
os.mkdir("./artifacts")
np.savetxt("./artifacts/test.csv", arr, delimiter=",")
def test_len(self):
ds = pt.datasets.CSVDataset("./artifacts/test.csv")
self.assertEqual(len(ds), 100)
def tearDown(self):
os.remove("./artifacts/test.csv")
class TestSpiral(unittest.TestCase):
def test_init(self):
ds = pt.datasets.Spiral(num_samples=10)
self.assertEqual(len(ds), 10)
class TestIris(unittest.TestCase):
def setUp(self):
self.ds = pt.datasets.Iris()
def test_size(self):
self.assertEqual(len(self.ds), 150)
def test_dims(self):
self.assertEqual(self.ds.data.shape[1], 4)
def test_dims_selection(self):
ds = pt.datasets.Iris(dims=[0, 1])
self.assertEqual(ds.data.shape[1], 2)
class TestBlobs(unittest.TestCase):
def test_size(self):
ds = pt.datasets.Blobs(num_samples=10)
self.assertEqual(len(ds), 10)
class TestRandom(unittest.TestCase):
def test_size(self):
ds = pt.datasets.Random(num_samples=10)
self.assertEqual(len(ds), 10)
class TestCircles(unittest.TestCase):
def test_size(self):
ds = pt.datasets.Circles(num_samples=10)
self.assertEqual(len(ds), 10)
class TestMoons(unittest.TestCase):
def test_size(self):
ds = pt.datasets.Moons(num_samples=10)
self.assertEqual(len(ds), 10)
# class TestTecator(unittest.TestCase):
# def setUp(self):
# self.artifacts_dir = "./artifacts/Tecator"
# self._remove_artifacts()
# def _remove_artifacts(self):
# if os.path.exists(self.artifacts_dir):
# shutil.rmtree(self.artifacts_dir)
# def test_download_false(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# self._remove_artifacts()
# with self.assertRaises(RuntimeError):
# _ = pt.datasets.Tecator(rootdir, download=False)
# def test_download_caching(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# _ = pt.datasets.Tecator(rootdir, download=True, verbose=False)
# _ = pt.datasets.Tecator(rootdir, download=False, verbose=False)
# def test_repr(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# train = pt.datasets.Tecator(rootdir, download=True, verbose=True)
# self.assertTrue("Split: Train" in train.__repr__())
# def test_download_train(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# train = pt.datasets.Tecator(root=rootdir,
# train=True,
# download=True,
# verbose=False)
# train = pt.datasets.Tecator(root=rootdir, download=True, verbose=False)
# x_train, y_train = train.data, train.targets
# self.assertEqual(x_train.shape[0], 144)
# self.assertEqual(y_train.shape[0], 144)
# self.assertEqual(x_train.shape[1], 100)
# def test_download_test(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# test = pt.datasets.Tecator(root=rootdir, train=False, verbose=False)
# x_test, y_test = test.data, test.targets
# self.assertEqual(x_test.shape[0], 71)
# self.assertEqual(y_test.shape[0], 71)
# self.assertEqual(x_test.shape[1], 100)
# def test_class_to_idx(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# test = pt.datasets.Tecator(root=rootdir, train=False, verbose=False)
# _ = test.class_to_idx
# def test_getitem(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# test = pt.datasets.Tecator(root=rootdir, train=False, verbose=False)
# x, y = test[0]
# self.assertEqual(x.shape[0], 100)
# self.assertIsInstance(y, int)
# def test_loadable_with_dataloader(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# test = pt.datasets.Tecator(root=rootdir, train=False, verbose=False)
# _ = torch.utils.data.DataLoader(test, batch_size=64, shuffle=True)
# def tearDown(self):
# self._remove_artifacts()

387
tests/test_functions.py Normal file
View File

@ -0,0 +1,387 @@
"""ProtoTorch functions test suite."""
import unittest
import numpy as np
import torch
from prototorch.functions import (activations, competitions, distances,
initializers)
class TestDistances(unittest.TestCase):
def setUp(self):
self.nx, self.mx = 32, 2048
self.ny, self.my = 8, 2048
self.x = torch.randn(self.nx, self.mx)
self.y = torch.randn(self.ny, self.my)
def test_manhattan(self):
actual = distances.lpnorm_distance(self.x, self.y, p=1)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=1,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_euclidean(self):
actual = distances.euclidean_distance(self.x, self.y)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=3)
self.assertIsNone(mismatch)
def test_squared_euclidean(self):
actual = distances.squared_euclidean_distance(self.x, self.y)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_lpnorm_p0(self):
actual = distances.lpnorm_distance(self.x, self.y, p=0)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=0,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_p2(self):
actual = distances.lpnorm_distance(self.x, self.y, p=2)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_p3(self):
actual = distances.lpnorm_distance(self.x, self.y, p=3)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=3,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_pinf(self):
actual = distances.lpnorm_distance(self.x, self.y, p=float('inf'))
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=float('inf'),
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_omega_identity(self):
omega = torch.eye(self.mx, self.my)
actual = distances.omega_distance(self.x, self.y, omega=omega)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_lomega_identity(self):
omega = torch.eye(self.mx, self.my)
omegas = torch.stack([omega for _ in range(self.ny)], dim=0)
actual = distances.lomega_distance(self.x, self.y, omegas=omegas)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x, self.y
class TestActivations(unittest.TestCase):
def setUp(self):
self.x = torch.randn(1024, 1)
def test_registry(self):
self.assertIsNotNone(activations.ACTIVATIONS)
def test_funcname_deserialization(self):
flist = ['identity', 'sigmoid_beta', 'swish_beta']
for funcname in flist:
f = activations.get_activation(funcname)
iscallable = callable(f)
self.assertTrue(iscallable)
def test_callable_deserialization(self):
def dummy(x, **kwargs):
return x
for f in [dummy, lambda x: x]:
f = activations.get_activation(f)
iscallable = callable(f)
self.assertTrue(iscallable)
self.assertEqual(1, f(1))
def test_unknown_deserialization(self):
for funcname in ['blubb', 'foobar']:
with self.assertRaises(NameError):
_ = activations.get_activation(funcname)
def test_identity(self):
actual = activations.identity(self.x)
desired = self.x
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_sigmoid_beta1(self):
actual = activations.sigmoid_beta(self.x, beta=1)
desired = torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_swish_beta1(self):
actual = activations.swish_beta(self.x, beta=1)
desired = self.x * torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x
class TestCompetitions(unittest.TestCase):
def setUp(self):
pass
def test_wtac(self):
d = torch.tensor([[2., 3., 1.99, 3.01], [2., 3., 2.01, 3.]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.wtac(d, labels)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_wtac_one_hot(self):
d = torch.tensor([[1.99, 3.01], [3., 2.01]])
labels = torch.tensor([[0, 1], [1, 0]])
actual = competitions.wtac(d, labels)
desired = torch.tensor([[0, 1], [1, 0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_knnc_k1(self):
d = torch.tensor([[2., 3., 1.99, 3.01], [2., 3., 2.01, 3.]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.knnc(d, labels, k=1)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
pass
class TestInitializers(unittest.TestCase):
def setUp(self):
self.x = torch.tensor(
[[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]],
dtype=torch.float32)
self.y = torch.tensor([0, 0, 1, 1])
self.gen = torch.manual_seed(42)
def test_registry(self):
self.assertIsNotNone(initializers.INITIALIZERS)
def test_funcname_deserialization(self):
flist = [
'zeros', 'ones', 'rand', 'randn', 'stratified_mean',
'stratified_random'
]
for funcname in flist:
f = initializers.get_initializer(funcname)
iscallable = callable(f)
self.assertTrue(iscallable)
def test_callable_deserialization(self):
def dummy(x):
return x
for f in [dummy, lambda x: x]:
f = initializers.get_initializer(f)
iscallable = callable(f)
self.assertTrue(iscallable)
self.assertEqual(1, f(1))
def test_unknown_deserialization(self):
for funcname in ['blubb', 'foobar']:
with self.assertRaises(NameError):
_ = initializers.get_initializer(funcname)
def test_zeros(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.zeros(self.x, self.y, pdist)
desired = torch.zeros(2, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_ones(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.ones(self.x, self.y, pdist)
desired = torch.ones(2, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_rand(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.rand(self.x, self.y, pdist)
desired = torch.rand(2, 3, generator=torch.manual_seed(42))
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_randn(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.randn(self.x, self.y, pdist)
desired = torch.randn(2, 3, generator=torch.manual_seed(42))
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_mean_equal1(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.stratified_mean(self.x, self.y, pdist)
desired = torch.tensor([[5., 5., 5.], [1., 1., 1.]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_random_equal1(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.stratified_random(self.x, self.y, pdist)
desired = torch.tensor([[0., -1., -2.], [2., 2., 2.]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_mean_equal2(self):
pdist = torch.tensor([2, 2])
actual, _ = initializers.stratified_mean(self.x, self.y, pdist)
desired = torch.tensor([[5., 5., 5.], [5., 5., 5.], [1., 1., 1.],
[1., 1., 1.]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_mean_unequal(self):
pdist = torch.tensor([1, 3])
actual, _ = initializers.stratified_mean(self.x, self.y, pdist)
desired = torch.tensor([[5., 5., 5.], [1., 1., 1.], [1., 1., 1.],
[1., 1., 1.]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_random_unequal(self):
pdist = torch.tensor([1, 3])
actual, _ = initializers.stratified_random(self.x, self.y, pdist)
desired = torch.tensor([[0., -1., -2.], [2., 2., 2.], [0., 0., 0.],
[0., 0., 0.]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x, self.y, self.gen
_ = torch.seed()

129
tests/test_modules.py Normal file
View File

@ -0,0 +1,129 @@
"""ProtoTorch modules test suite."""
import unittest
import numpy as np
import torch
from prototorch.modules import prototypes, losses
class TestPrototypes(unittest.TestCase):
def setUp(self):
self.x = torch.tensor(
[[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]],
dtype=torch.float32)
self.y = torch.tensor([0, 0, 1, 1])
self.gen = torch.manual_seed(42)
def test_addprototypes1d_init_without_input_dim(self):
with self.assertRaises(NameError):
_ = prototypes.AddPrototypes1D(nclasses=1)
def test_addprototypes1d_init_without_nclasses(self):
with self.assertRaises(NameError):
_ = prototypes.AddPrototypes1D(input_dim=1)
def test_addprototypes1d_init_without_pdist(self):
p1 = prototypes.AddPrototypes1D(input_dim=6,
nclasses=2,
prototypes_per_class=4,
prototype_initializer='ones')
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.ones(8, 6)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_addprototypes1d_init_without_data(self):
pdist = [2, 2]
p1 = prototypes.AddPrototypes1D(input_dim=3,
prototype_distribution=pdist,
prototype_initializer='zeros')
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(4, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
# def test_addprototypes1d_init_torch_pdist(self):
# pdist = torch.tensor([2, 2])
# p1 = prototypes.AddPrototypes1D(input_dim=3,
# prototype_distribution=pdist,
# prototype_initializer='zeros')
# protos = p1.prototypes
# actual = protos.detach().numpy()
# desired = torch.zeros(4, 3)
# mismatch = np.testing.assert_array_almost_equal(actual,
# desired,
# decimal=5)
# self.assertIsNone(mismatch)
def test_addprototypes1d_init_with_ppc(self):
p1 = prototypes.AddPrototypes1D(data=[self.x, self.y],
prototypes_per_class=2,
prototype_initializer='zeros')
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(4, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_addprototypes1d_init_with_pdist(self):
p1 = prototypes.AddPrototypes1D(data=[self.x, self.y],
prototype_distribution=[6, 9],
prototype_initializer='zeros')
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(15, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_addprototypes1d_func_initializer(self):
def my_initializer(*args, **kwargs):
return torch.full((2, 99), 99), torch.tensor([0, 1])
p1 = prototypes.AddPrototypes1D(input_dim=99,
nclasses=2,
prototypes_per_class=1,
prototype_initializer=my_initializer)
protos = p1.prototypes
actual = protos.detach().numpy()
desired = 99 * torch.ones(2, 99)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_addprototypes1d_forward(self):
p1 = prototypes.AddPrototypes1D(data=[self.x, self.y])
protos, _ = p1()
actual = protos.detach().numpy()
desired = torch.ones(2, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x, self.y, self.gen
_ = torch.seed()
class TestLosses(unittest.TestCase):
def setUp(self):
pass
def test_glvqloss_init(self):
_ = losses.GLVQLoss()
def tearDown(self):
pass

View File

@ -1,47 +0,0 @@
"""ProtoTorch utils test suite"""
import numpy as np
import torch
import prototorch as pt
def test_mesh2d_without_input():
mesh, xx, yy = pt.utils.mesh2d(border=2.0, resolution=10)
assert mesh.shape[0] == 100
assert mesh.shape[1] == 2
assert xx.shape[0] == 10
assert xx.shape[1] == 10
assert yy.shape[0] == 10
assert yy.shape[1] == 10
assert np.min(xx) == -2.0
assert np.max(xx) == 2.0
assert np.min(yy) == -2.0
assert np.max(yy) == 2.0
def test_mesh2d_with_torch_input():
x = 10 * torch.rand(5, 2)
mesh, xx, yy = pt.utils.mesh2d(x, border=0.0, resolution=100)
assert mesh.shape[0] == 100 * 100
assert mesh.shape[1] == 2
assert xx.shape[0] == 100
assert xx.shape[1] == 100
assert yy.shape[0] == 100
assert yy.shape[1] == 100
assert np.min(xx) == x[:, 0].min()
assert np.max(xx) == x[:, 0].max()
assert np.min(yy) == x[:, 1].min()
assert np.max(yy) == x[:, 1].max()
def test_hex_to_rgb():
red_rgb = list(pt.utils.hex_to_rgb(["#ff0000"]))[0]
assert red_rgb[0] == 255
assert red_rgb[1] == 0
assert red_rgb[2] == 0
def test_rgb_to_hex():
blue_hex = list(pt.utils.rgb_to_hex([(0, 0, 255)]))[0]
assert blue_hex.lower() == "0000ff"

15
tox.ini Normal file
View File

@ -0,0 +1,15 @@
# tox (https://tox.readthedocs.io/) is a tool for running tests
# in multiple virtualenvs. This configuration file will run the
# test suite on all supported python versions. To use it, "pip install tox"
# and then run "tox" from this directory.
[tox]
envlist = py36
[testenv]
deps =
numpy
unittest-xml-reporting
commands =
python -m xmlrunner -o reports