Minor cosmetic changes

This commit is contained in:
blackfly 2020-04-11 17:35:32 +02:00
parent e54bf07030
commit f80d9648c3
4 changed files with 29 additions and 25 deletions

View File

@ -3,8 +3,8 @@
## Release 0.1.1-dev0
### Includes
- Bugfixes.
- 100% test coverage.
- Minor bugfixes.
- 100% line coverage.
## Release 0.1.0-dev0

View File

@ -16,18 +16,24 @@ def register_activation(f):
@register_activation
# @torch.jit.script
def identity(x, beta=torch.tensor([0])):
""":math:`f(x) = x`."""
"""Identity activation function.
Definition:
:math:`f(x) = x`
"""
return x
@register_activation
# @torch.jit.script
def sigmoid_beta(x, beta=torch.tensor([10])):
r""":math:`f(x) = \\frac{1}{1 + e^{-\\beta x}}`.
r"""Sigmoid activation function with scaling.
Definition:
:math:`f(x) = \frac{1}{1 + e^{-\beta x}}`
Keyword Arguments:
__________________
beta (float): Parameter :math:`\\beta`
beta (`torch.tensor`): Scaling parameter :math:`\beta`
"""
out = torch.reciprocal(1.0 + torch.exp(-int(beta.item()) * x))
return out
@ -36,11 +42,13 @@ def sigmoid_beta(x, beta=torch.tensor([10])):
@register_activation
# @torch.jit.script
def swish_beta(x, beta=torch.tensor([10])):
r""":math:`f(x) = \\frac{x}{1 + e^{-\\beta x}}`.
r"""Swish activation function with scaling.
Definition:
:math:`f(x) = \frac{x}{1 + e^{-\beta x}}`
Keyword Arguments:
__________________
beta (float): Parameter :math:`\\beta`
beta (`torch.tensor`): Scaling parameter :math:`\beta`
"""
out = x * sigmoid_beta(x, beta=beta)
return out
@ -49,8 +57,6 @@ def swish_beta(x, beta=torch.tensor([10])):
def get_activation(funcname):
if callable(funcname):
return funcname
else:
if funcname in ACTIVATIONS:
return ACTIVATIONS.get(funcname)
else:
raise NameError(f'Activation {funcname} was not found.')
if funcname in ACTIVATIONS:
return ACTIVATIONS.get(funcname)
raise NameError(f'Activation {funcname} was not found.')

View File

@ -30,8 +30,8 @@ def euclidean_distance(x, y):
def lpnorm_distance(x, y, p):
"""
Compute :math:`{\\langle x, y \\rangle}_p`.
r"""
Compute :math:`{\langle x, y \rangle}_p`.
Expected dimension of x is 2.
Expected dimension of y is 2.
@ -41,10 +41,10 @@ def lpnorm_distance(x, y, p):
def omega_distance(x, y, omega):
"""
r"""
Omega distance.
Compute :math:`{\\langle \\Omega x, \\Omega y \\rangle}_p`
Compute :math:`{\langle \Omega x, \Omega y \rangle}_p`
Expected dimension of x is 2.
Expected dimension of y is 2.
@ -57,10 +57,10 @@ def omega_distance(x, y, omega):
def lomega_distance(x, y, omegas):
"""
r"""
Localized Omega distance.
Compute :math:`{\\langle \\Omega_k x, \\Omega_k y_k \\rangle}_p`
Compute :math:`{\langle \Omega_k x, \Omega_k y_k \rangle}_p`
Expected dimension of x is 2.
Expected dimension of y is 2.

View File

@ -86,8 +86,6 @@ def stratified_random(x_train, y_train, prototype_distribution):
def get_initializer(funcname):
if callable(funcname):
return funcname
else:
if funcname in INITIALIZERS:
return INITIALIZERS.get(funcname)
else:
raise NameError(f'Initializer {funcname} was not found.')
if funcname in INITIALIZERS:
return INITIALIZERS.get(funcname)
raise NameError(f'Initializer {funcname} was not found.')