Add euclidean_distance_v2
This commit is contained in:
parent
7d9dfc27ee
commit
e2918dffed
@ -43,9 +43,21 @@ def euclidean_distance(x, y):
|
||||
return distances
|
||||
|
||||
|
||||
def euclidean_distance_v2(x, y):
|
||||
diff = y - x.unsqueeze(1)
|
||||
pairwise_distances = (diff @ diff.permute((0, 2, 1))).sqrt()
|
||||
# Passing `dim1=-2` and `dim2=-1` to `diagonal()` takes the
|
||||
# batch diagonal. See:
|
||||
# https://pytorch.org/docs/stable/generated/torch.diagonal.html
|
||||
distances = torch.diagonal(pairwise_distances, dim1=-2, dim2=-1)
|
||||
# print(f"{diff.shape=}") # (nx, ny, ndim)
|
||||
# print(f"{pairwise_distances.shape=}") # (nx, ny, ny)
|
||||
# print(f"{distances.shape=}") # (nx, ny)
|
||||
return distances
|
||||
|
||||
|
||||
def lpnorm_distance(x, y, p):
|
||||
r"""
|
||||
Calculates the lp-norm between :math:`\bm x` and :math:`\bm y`.
|
||||
r"""Calculate the lp-norm between :math:`\bm x` and :math:`\bm y`.
|
||||
Also known as Minkowski distance.
|
||||
|
||||
Compute :math:`{\| \bm x - \bm y \|}_p`.
|
||||
@ -107,26 +119,18 @@ def euclidean_distance_matrix(x, y, squared=False, epsilon=1e-10):
|
||||
for tensor in [x, y]:
|
||||
if tensor.ndim != 2:
|
||||
raise ValueError(
|
||||
"The tensor dimension must be two. You provide: tensor.ndim="
|
||||
+ str(tensor.ndim)
|
||||
+ "."
|
||||
)
|
||||
"The tensor dimension must be two. You provide: tensor.ndim=" +
|
||||
str(tensor.ndim) + ".")
|
||||
if not equal_int_shape([tuple(x.shape)[1]], [tuple(y.shape)[1]]):
|
||||
raise ValueError(
|
||||
"The vector shape must be equivalent in both tensors. You provide: tuple(y.shape)[1]="
|
||||
+ str(tuple(x.shape)[1])
|
||||
+ " and tuple(y.shape)(y)[1]="
|
||||
+ str(tuple(y.shape)[1])
|
||||
+ "."
|
||||
)
|
||||
+ str(tuple(x.shape)[1]) + " and tuple(y.shape)(y)[1]=" +
|
||||
str(tuple(y.shape)[1]) + ".")
|
||||
|
||||
y = torch.transpose(y)
|
||||
|
||||
diss = (
|
||||
torch.sum(x ** 2, axis=1, keepdims=True)
|
||||
- 2 * torch.dot(x, y)
|
||||
+ torch.sum(y ** 2, axis=0, keepdims=True)
|
||||
)
|
||||
diss = (torch.sum(x**2, axis=1, keepdims=True) - 2 * torch.dot(x, y) +
|
||||
torch.sum(y**2, axis=0, keepdims=True))
|
||||
|
||||
if not squared:
|
||||
if epsilon == 0:
|
||||
@ -173,19 +177,18 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
|
||||
if subspaces.ndim == 2:
|
||||
# clean solution without map if the matrix_scope is global
|
||||
projectors = torch.eye(subspace_int_shape[-2]) - torch.dot(
|
||||
subspaces, torch.transpose(subspaces)
|
||||
)
|
||||
subspaces, torch.transpose(subspaces))
|
||||
|
||||
projected_signals = torch.dot(signals, projectors)
|
||||
projected_protos = torch.dot(protos, projectors)
|
||||
|
||||
diss = euclidean_distance_matrix(
|
||||
projected_signals, projected_protos, squared=squared, epsilon=epsilon
|
||||
)
|
||||
diss = euclidean_distance_matrix(projected_signals,
|
||||
projected_protos,
|
||||
squared=squared,
|
||||
epsilon=epsilon)
|
||||
|
||||
diss = torch.reshape(
|
||||
diss, [signal_shape[0], signal_shape[2], proto_shape[0]]
|
||||
)
|
||||
diss, [signal_shape[0], signal_shape[2], proto_shape[0]])
|
||||
|
||||
return torch.permute(diss, [0, 2, 1])
|
||||
|
||||
@ -193,21 +196,18 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
|
||||
|
||||
# no solution without map possible --> memory efficient but slow!
|
||||
projectors = torch.eye(subspace_int_shape[-2]) - torch.bmm(
|
||||
subspaces, subspaces
|
||||
) # K.batch_dot(subspaces, subspaces, [2, 2])
|
||||
subspaces,
|
||||
subspaces) # K.batch_dot(subspaces, subspaces, [2, 2])
|
||||
|
||||
projected_protos = (
|
||||
protos @ subspaces
|
||||
projected_protos = (protos @ subspaces
|
||||
).T # K.batch_dot(projectors, protos, [1, 1]))
|
||||
|
||||
def projected_norm(projector):
|
||||
return torch.sum(torch.dot(signals, projector)**2, axis=1)
|
||||
|
||||
diss = (
|
||||
torch.transpose(map(projected_norm, projectors))
|
||||
- 2 * torch.dot(signals, projected_protos)
|
||||
+ torch.sum(projected_protos ** 2, axis=0, keepdims=True)
|
||||
)
|
||||
diss = (torch.transpose(map(projected_norm, projectors)) -
|
||||
2 * torch.dot(signals, projected_protos) +
|
||||
torch.sum(projected_protos**2, axis=0, keepdims=True))
|
||||
|
||||
if not squared:
|
||||
if epsilon == 0:
|
||||
@ -216,8 +216,7 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
|
||||
diss = torch.sqrt(torch.max(diss, epsilon))
|
||||
|
||||
diss = torch.reshape(
|
||||
diss, [signal_shape[0], signal_shape[2], proto_shape[0]]
|
||||
)
|
||||
diss, [signal_shape[0], signal_shape[2], proto_shape[0]])
|
||||
|
||||
return torch.permute(diss, [0, 2, 1])
|
||||
|
||||
@ -233,12 +232,12 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
|
||||
|
||||
# Scope: Tangentspace Projections
|
||||
diff = torch.reshape(
|
||||
diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1)
|
||||
)
|
||||
diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1))
|
||||
projected_diff = diff @ projectors
|
||||
projected_diff = torch.reshape(
|
||||
projected_diff,
|
||||
(signal_shape[0], signal_shape[2], signal_shape[1]) + signal_shape[3:],
|
||||
(signal_shape[0], signal_shape[2], signal_shape[1]) +
|
||||
signal_shape[3:],
|
||||
)
|
||||
|
||||
diss = torch.norm(projected_diff, 2, dim=-1)
|
||||
@ -251,13 +250,13 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
|
||||
|
||||
# Scope: Tangentspace Projections
|
||||
diff = torch.reshape(
|
||||
diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1)
|
||||
)
|
||||
diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1))
|
||||
diff = diff.permute([1, 0, 2])
|
||||
projected_diff = torch.bmm(diff, projectors)
|
||||
projected_diff = torch.reshape(
|
||||
projected_diff,
|
||||
(signal_shape[1], signal_shape[0], signal_shape[2]) + signal_shape[3:],
|
||||
(signal_shape[1], signal_shape[0], signal_shape[2]) +
|
||||
signal_shape[3:],
|
||||
)
|
||||
|
||||
diss = torch.norm(projected_diff, 2, dim=-1)
|
||||
|
Loading…
Reference in New Issue
Block a user