Add test cases to test newly added features
This commit is contained in:
parent
d17b9a3346
commit
cf0659d881
@ -126,6 +126,16 @@ class TestCompetitions(unittest.TestCase):
|
|||||||
decimal=5)
|
decimal=5)
|
||||||
self.assertIsNone(mismatch)
|
self.assertIsNone(mismatch)
|
||||||
|
|
||||||
|
def test_stratified_min_simple(self):
|
||||||
|
d = torch.tensor([[0., 2., 3.], [8., 0, 1]])
|
||||||
|
labels = torch.tensor([0, 1, 2])
|
||||||
|
actual = competitions.stratified_min(d, labels)
|
||||||
|
desired = torch.tensor([[0., 2., 3.], [8., 0., 1.]])
|
||||||
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||||
|
desired,
|
||||||
|
decimal=5)
|
||||||
|
self.assertIsNone(mismatch)
|
||||||
|
|
||||||
def test_knnc_k1(self):
|
def test_knnc_k1(self):
|
||||||
d = torch.tensor([[2., 3., 1.99, 3.01], [2., 3., 2.01, 3.]])
|
d = torch.tensor([[2., 3., 1.99, 3.01], [2., 3., 2.01, 3.]])
|
||||||
labels = torch.tensor([0, 1, 2, 3])
|
labels = torch.tensor([0, 1, 2, 3])
|
||||||
@ -372,7 +382,7 @@ class TestInitializers(unittest.TestCase):
|
|||||||
|
|
||||||
def test_stratified_mean_equal1(self):
|
def test_stratified_mean_equal1(self):
|
||||||
pdist = torch.tensor([1, 1])
|
pdist = torch.tensor([1, 1])
|
||||||
actual, _ = initializers.stratified_mean(self.x, self.y, pdist)
|
actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False)
|
||||||
desired = torch.tensor([[5., 5., 5.], [1., 1., 1.]])
|
desired = torch.tensor([[5., 5., 5.], [1., 1., 1.]])
|
||||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||||
desired,
|
desired,
|
||||||
@ -381,7 +391,8 @@ class TestInitializers(unittest.TestCase):
|
|||||||
|
|
||||||
def test_stratified_random_equal1(self):
|
def test_stratified_random_equal1(self):
|
||||||
pdist = torch.tensor([1, 1])
|
pdist = torch.tensor([1, 1])
|
||||||
actual, _ = initializers.stratified_random(self.x, self.y, pdist)
|
actual, _ = initializers.stratified_random(self.x, self.y, pdist,
|
||||||
|
False)
|
||||||
desired = torch.tensor([[0., -1., -2.], [0., 0., 0.]])
|
desired = torch.tensor([[0., -1., -2.], [0., 0., 0.]])
|
||||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||||
desired,
|
desired,
|
||||||
@ -390,7 +401,7 @@ class TestInitializers(unittest.TestCase):
|
|||||||
|
|
||||||
def test_stratified_mean_equal2(self):
|
def test_stratified_mean_equal2(self):
|
||||||
pdist = torch.tensor([2, 2])
|
pdist = torch.tensor([2, 2])
|
||||||
actual, _ = initializers.stratified_mean(self.x, self.y, pdist)
|
actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False)
|
||||||
desired = torch.tensor([[5., 5., 5.], [5., 5., 5.], [1., 1., 1.],
|
desired = torch.tensor([[5., 5., 5.], [5., 5., 5.], [1., 1., 1.],
|
||||||
[1., 1., 1.]])
|
[1., 1., 1.]])
|
||||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||||
@ -400,7 +411,8 @@ class TestInitializers(unittest.TestCase):
|
|||||||
|
|
||||||
def test_stratified_random_equal2(self):
|
def test_stratified_random_equal2(self):
|
||||||
pdist = torch.tensor([2, 2])
|
pdist = torch.tensor([2, 2])
|
||||||
actual, _ = initializers.stratified_random(self.x, self.y, pdist)
|
actual, _ = initializers.stratified_random(self.x, self.y, pdist,
|
||||||
|
False)
|
||||||
desired = torch.tensor([[0., -1., -2.], [0., -1., -2.], [0., 0., 0.],
|
desired = torch.tensor([[0., -1., -2.], [0., -1., -2.], [0., 0., 0.],
|
||||||
[0., 0., 0.]])
|
[0., 0., 0.]])
|
||||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||||
@ -410,7 +422,7 @@ class TestInitializers(unittest.TestCase):
|
|||||||
|
|
||||||
def test_stratified_mean_unequal(self):
|
def test_stratified_mean_unequal(self):
|
||||||
pdist = torch.tensor([1, 3])
|
pdist = torch.tensor([1, 3])
|
||||||
actual, _ = initializers.stratified_mean(self.x, self.y, pdist)
|
actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False)
|
||||||
desired = torch.tensor([[5., 5., 5.], [1., 1., 1.], [1., 1., 1.],
|
desired = torch.tensor([[5., 5., 5.], [1., 1., 1.], [1., 1., 1.],
|
||||||
[1., 1., 1.]])
|
[1., 1., 1.]])
|
||||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||||
@ -420,7 +432,8 @@ class TestInitializers(unittest.TestCase):
|
|||||||
|
|
||||||
def test_stratified_random_unequal(self):
|
def test_stratified_random_unequal(self):
|
||||||
pdist = torch.tensor([1, 3])
|
pdist = torch.tensor([1, 3])
|
||||||
actual, _ = initializers.stratified_random(self.x, self.y, pdist)
|
actual, _ = initializers.stratified_random(self.x, self.y, pdist,
|
||||||
|
False)
|
||||||
desired = torch.tensor([[0., -1., -2.], [0., 0., 0.], [0., 0., 0.],
|
desired = torch.tensor([[0., -1., -2.], [0., 0., 0.], [0., 0., 0.],
|
||||||
[0., 0., 0.]])
|
[0., 0., 0.]])
|
||||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||||
@ -428,6 +441,36 @@ class TestInitializers(unittest.TestCase):
|
|||||||
decimal=5)
|
decimal=5)
|
||||||
self.assertIsNone(mismatch)
|
self.assertIsNone(mismatch)
|
||||||
|
|
||||||
|
def test_stratified_mean_unequal_one_hot(self):
|
||||||
|
pdist = torch.tensor([1, 3])
|
||||||
|
y = torch.eye(2)[self.y]
|
||||||
|
desired1 = torch.tensor([[5., 5., 5.], [1., 1., 1.], [1., 1., 1.],
|
||||||
|
[1., 1., 1.]])
|
||||||
|
actual1, actual2 = initializers.stratified_mean(self.x, y, pdist)
|
||||||
|
desired2 = torch.tensor([[1, 0], [0, 1], [0, 1], [0, 1]])
|
||||||
|
mismatch = np.testing.assert_array_almost_equal(actual1,
|
||||||
|
desired1,
|
||||||
|
decimal=5)
|
||||||
|
mismatch = np.testing.assert_array_almost_equal(actual2,
|
||||||
|
desired2,
|
||||||
|
decimal=5)
|
||||||
|
self.assertIsNone(mismatch)
|
||||||
|
|
||||||
|
def test_stratified_random_unequal_one_hot(self):
|
||||||
|
pdist = torch.tensor([1, 3])
|
||||||
|
y = torch.eye(2)[self.y]
|
||||||
|
actual1, actual2 = initializers.stratified_random(self.x, y, pdist)
|
||||||
|
desired1 = torch.tensor([[0., -1., -2.], [0., 0., 0.], [0., 0., 0.],
|
||||||
|
[0., 0., 0.]])
|
||||||
|
desired2 = torch.tensor([[1, 0], [0, 1], [0, 1], [0, 1]])
|
||||||
|
mismatch = np.testing.assert_array_almost_equal(actual1,
|
||||||
|
desired1,
|
||||||
|
decimal=5)
|
||||||
|
mismatch = np.testing.assert_array_almost_equal(actual2,
|
||||||
|
desired2,
|
||||||
|
decimal=5)
|
||||||
|
self.assertIsNone(mismatch)
|
||||||
|
|
||||||
def tearDown(self):
|
def tearDown(self):
|
||||||
del self.x, self.y, self.gen
|
del self.x, self.y, self.gen
|
||||||
_ = torch.seed()
|
_ = torch.seed()
|
||||||
|
@ -5,7 +5,7 @@ import unittest
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from prototorch.modules import prototypes, losses
|
from prototorch.modules import losses, prototypes
|
||||||
|
|
||||||
|
|
||||||
class TestPrototypes(unittest.TestCase):
|
class TestPrototypes(unittest.TestCase):
|
||||||
@ -18,12 +18,16 @@ class TestPrototypes(unittest.TestCase):
|
|||||||
|
|
||||||
def test_prototypes1d_init_without_input_dim(self):
|
def test_prototypes1d_init_without_input_dim(self):
|
||||||
with self.assertRaises(NameError):
|
with self.assertRaises(NameError):
|
||||||
_ = prototypes.Prototypes1D(nclasses=1)
|
_ = prototypes.Prototypes1D(nclasses=2)
|
||||||
|
|
||||||
def test_prototypes1d_init_without_nclasses(self):
|
def test_prototypes1d_init_without_nclasses(self):
|
||||||
with self.assertRaises(NameError):
|
with self.assertRaises(NameError):
|
||||||
_ = prototypes.Prototypes1D(input_dim=1)
|
_ = prototypes.Prototypes1D(input_dim=1)
|
||||||
|
|
||||||
|
def test_prototypes1d_init_with_nclasses_1(self):
|
||||||
|
with self.assertWarns(UserWarning):
|
||||||
|
_ = prototypes.Prototypes1D(nclasses=1, input_dim=1)
|
||||||
|
|
||||||
def test_prototypes1d_init_without_pdist(self):
|
def test_prototypes1d_init_without_pdist(self):
|
||||||
p1 = prototypes.Prototypes1D(input_dim=6,
|
p1 = prototypes.Prototypes1D(input_dim=6,
|
||||||
nclasses=2,
|
nclasses=2,
|
||||||
@ -73,24 +77,72 @@ class TestPrototypes(unittest.TestCase):
|
|||||||
self.assertIsNone(mismatch)
|
self.assertIsNone(mismatch)
|
||||||
|
|
||||||
def test_prototypes1d_init_without_inputdim_with_data(self):
|
def test_prototypes1d_init_without_inputdim_with_data(self):
|
||||||
_ = prototypes.Prototypes1D(nclasses=1,
|
_ = prototypes.Prototypes1D(nclasses=2,
|
||||||
prototypes_per_class=1,
|
prototypes_per_class=1,
|
||||||
prototype_initializer='stratified_mean',
|
prototype_initializer='stratified_mean',
|
||||||
data=[[[1.]], [1]])
|
data=[[[1.], [0.]], [1, 0]])
|
||||||
|
|
||||||
def test_prototypes1d_init_with_int_data(self):
|
def test_prototypes1d_init_with_int_data(self):
|
||||||
_ = prototypes.Prototypes1D(nclasses=1,
|
_ = prototypes.Prototypes1D(nclasses=2,
|
||||||
prototypes_per_class=1,
|
prototypes_per_class=1,
|
||||||
prototype_initializer='stratified_mean',
|
prototype_initializer='stratified_mean',
|
||||||
data=[[[1]], [1]])
|
data=[[[1], [0]], [1, 0]])
|
||||||
|
|
||||||
|
def test_prototypes1d_init_one_hot_without_data(self):
|
||||||
|
_ = prototypes.Prototypes1D(input_dim=1,
|
||||||
|
nclasses=2,
|
||||||
|
prototypes_per_class=1,
|
||||||
|
prototype_initializer='stratified_mean',
|
||||||
|
data=None,
|
||||||
|
one_hot_labels=True)
|
||||||
|
|
||||||
|
def test_prototypes1d_init_one_hot_labels_false(self):
|
||||||
|
"""Test if ValueError is raised when `one_hot_labels` is set to `False`
|
||||||
|
but the provided `data` has one-hot encoded labels.
|
||||||
|
"""
|
||||||
|
with self.assertRaises(ValueError):
|
||||||
|
_ = prototypes.Prototypes1D(
|
||||||
|
input_dim=1,
|
||||||
|
nclasses=2,
|
||||||
|
prototypes_per_class=1,
|
||||||
|
prototype_initializer='stratified_mean',
|
||||||
|
data=([[0.], [1.]], [[0, 1], [1, 0]]),
|
||||||
|
one_hot_labels=False)
|
||||||
|
|
||||||
|
def test_prototypes1d_init_1d_y_data_one_hot_labels_true(self):
|
||||||
|
"""Test if ValueError is raised when `one_hot_labels` is set to `True`
|
||||||
|
but the provided `data` does not contain one-hot encoded labels.
|
||||||
|
"""
|
||||||
|
with self.assertRaises(ValueError):
|
||||||
|
_ = prototypes.Prototypes1D(
|
||||||
|
input_dim=1,
|
||||||
|
nclasses=2,
|
||||||
|
prototypes_per_class=1,
|
||||||
|
prototype_initializer='stratified_mean',
|
||||||
|
data=([[0.], [1.]], [0, 1]),
|
||||||
|
one_hot_labels=True)
|
||||||
|
|
||||||
|
def test_prototypes1d_init_one_hot_labels_true(self):
|
||||||
|
"""Test if ValueError is raised when `one_hot_labels` is set to `True`
|
||||||
|
but the provided `data` contains 2D targets but
|
||||||
|
does not contain one-hot encoded labels.
|
||||||
|
"""
|
||||||
|
with self.assertRaises(ValueError):
|
||||||
|
_ = prototypes.Prototypes1D(
|
||||||
|
input_dim=1,
|
||||||
|
nclasses=2,
|
||||||
|
prototypes_per_class=1,
|
||||||
|
prototype_initializer='stratified_mean',
|
||||||
|
data=([[0.], [1.]], [[0], [1]]),
|
||||||
|
one_hot_labels=True)
|
||||||
|
|
||||||
def test_prototypes1d_init_with_int_dtype(self):
|
def test_prototypes1d_init_with_int_dtype(self):
|
||||||
with self.assertRaises(RuntimeError):
|
with self.assertRaises(RuntimeError):
|
||||||
_ = prototypes.Prototypes1D(
|
_ = prototypes.Prototypes1D(
|
||||||
nclasses=1,
|
nclasses=2,
|
||||||
prototypes_per_class=1,
|
prototypes_per_class=1,
|
||||||
prototype_initializer='stratified_mean',
|
prototype_initializer='stratified_mean',
|
||||||
data=[[[1]], [1]],
|
data=[[[1], [0]], [1, 0]],
|
||||||
dtype=torch.int32)
|
dtype=torch.int32)
|
||||||
|
|
||||||
def test_prototypes1d_inputndim_with_data(self):
|
def test_prototypes1d_inputndim_with_data(self):
|
||||||
@ -104,12 +156,15 @@ class TestPrototypes(unittest.TestCase):
|
|||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
_ = prototypes.Prototypes1D(
|
_ = prototypes.Prototypes1D(
|
||||||
input_dim=2,
|
input_dim=2,
|
||||||
nclasses=1,
|
nclasses=2,
|
||||||
prototypes_per_class=1,
|
prototypes_per_class=1,
|
||||||
prototype_initializer='stratified_mean',
|
prototype_initializer='stratified_mean',
|
||||||
data=[[[1.]], [1]])
|
data=[[[1.], [0.]], [1, 0]])
|
||||||
|
|
||||||
def test_prototypes1d_nclasses_with_data(self):
|
def test_prototypes1d_nclasses_with_data(self):
|
||||||
|
"""Test ValueError raise if provided `nclasses` is not the same
|
||||||
|
as the one computed from the provided `data`.
|
||||||
|
"""
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
_ = prototypes.Prototypes1D(
|
_ = prototypes.Prototypes1D(
|
||||||
input_dim=1,
|
input_dim=1,
|
||||||
@ -168,12 +223,12 @@ class TestPrototypes(unittest.TestCase):
|
|||||||
decimal=5)
|
decimal=5)
|
||||||
self.assertIsNone(mismatch)
|
self.assertIsNone(mismatch)
|
||||||
|
|
||||||
def test_prototypes1d_dist_check(self):
|
def test_prototypes1d_dist_validate(self):
|
||||||
p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0])
|
p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0])
|
||||||
with self.assertWarns(UserWarning):
|
with self.assertWarns(UserWarning):
|
||||||
_ = p1._check_prototype_distribution()
|
_ = p1._validate_prototype_distribution()
|
||||||
|
|
||||||
def test_prototypes1d_check_extra_repr_not_empty(self):
|
def test_prototypes1d_validate_extra_repr_not_empty(self):
|
||||||
p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0])
|
p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0])
|
||||||
rep = p1.extra_repr()
|
rep = p1.extra_repr()
|
||||||
self.assertNotEqual(rep, '')
|
self.assertNotEqual(rep, '')
|
||||||
|
Loading…
Reference in New Issue
Block a user