[QA] Remove utils.py
This commit is contained in:
parent
70cf17607e
commit
b1e64c8b8b
@ -1,243 +0,0 @@
|
||||
"""Utilities that provide various small functionalities."""
|
||||
|
||||
import os
|
||||
import pickle
|
||||
import sys
|
||||
from time import time
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
def progressbar(title, value, end, bar_width=20):
|
||||
percent = float(value) / end
|
||||
arrow = "=" * int(round(percent * bar_width) - 1) + ">"
|
||||
spaces = "." * (bar_width - len(arrow))
|
||||
sys.stdout.write("\r{}: [{}] {}%".format(title, arrow + spaces,
|
||||
int(round(percent * 100))))
|
||||
sys.stdout.flush()
|
||||
if percent == 1.0:
|
||||
print()
|
||||
|
||||
|
||||
def prettify_string(inputs, start="", sep=" ", end="\n"):
|
||||
outputs = start + " ".join(inputs.split()) + end
|
||||
return outputs
|
||||
|
||||
|
||||
def pretty_print(inputs):
|
||||
print(prettify_string(inputs))
|
||||
|
||||
|
||||
def writelog(self, *logs, logdir="./logs", logfile="run.txt"):
|
||||
f = os.path.join(logdir, logfile)
|
||||
with open(f, "a+") as fh:
|
||||
for log in logs:
|
||||
fh.write(log)
|
||||
fh.write("\n")
|
||||
|
||||
|
||||
def start_tensorboard(self, logdir="./logs"):
|
||||
cmd = f"tensorboard --logdir={logdir} --port=6006"
|
||||
os.system(cmd)
|
||||
|
||||
|
||||
def make_directory(save_dir):
|
||||
if not os.path.exists(save_dir):
|
||||
print(f"Making directory {save_dir}.")
|
||||
os.mkdir(save_dir)
|
||||
|
||||
|
||||
def make_gif(filenames, duration, output_file=None):
|
||||
try:
|
||||
import imageio
|
||||
except ModuleNotFoundError as e:
|
||||
print("Please install Protoflow with [other] extra requirements.")
|
||||
raise (e)
|
||||
|
||||
images = list()
|
||||
for filename in filenames:
|
||||
images.append(imageio.imread(filename))
|
||||
if not output_file:
|
||||
output_file = f"makegif.gif"
|
||||
if images:
|
||||
imageio.mimwrite(output_file, images, duration=duration)
|
||||
|
||||
|
||||
def gif_from_dir(directory,
|
||||
duration,
|
||||
prefix="",
|
||||
output_file=None,
|
||||
verbose=True):
|
||||
images = os.listdir(directory)
|
||||
if verbose:
|
||||
print(f"Making gif from {len(images)} images under {directory}.")
|
||||
filenames = list()
|
||||
# Sort images
|
||||
images = sorted(
|
||||
images,
|
||||
key=lambda img: int(os.path.splitext(img)[0].replace(prefix, "")))
|
||||
for image in images:
|
||||
fname = os.path.join(directory, image)
|
||||
filenames.append(fname)
|
||||
if not output_file:
|
||||
output_file = os.path.join(directory, "makegif.gif")
|
||||
make_gif(filenames=filenames, duration=duration, output_file=output_file)
|
||||
|
||||
|
||||
def accuracy_score(y_true, y_pred):
|
||||
accuracy = np.sum(y_true == y_pred)
|
||||
normalized_acc = accuracy / float(len(y_true))
|
||||
return normalized_acc
|
||||
|
||||
|
||||
def predict_and_score(clf,
|
||||
x_test,
|
||||
y_test,
|
||||
verbose=False,
|
||||
title="Test accuracy"):
|
||||
y_pred = clf.predict(x_test)
|
||||
accuracy = np.sum(y_test == y_pred)
|
||||
normalized_acc = accuracy / float(len(y_test))
|
||||
if verbose:
|
||||
print(f"{title}: {normalized_acc * 100:06.04f}%")
|
||||
return normalized_acc
|
||||
|
||||
|
||||
def remove_nan_rows(arr):
|
||||
"""Remove all rows with `nan` values in `arr`."""
|
||||
mask = np.isnan(arr).any(axis=1)
|
||||
return arr[~mask]
|
||||
|
||||
|
||||
def remove_nan_cols(arr):
|
||||
"""Remove all columns with `nan` values in `arr`."""
|
||||
mask = np.isnan(arr).any(axis=0)
|
||||
return arr[~mask]
|
||||
|
||||
|
||||
def replace_in(arr, replacement_dict, inplace=False):
|
||||
"""Replace the keys found in `arr` with the values from
|
||||
the `replacement_dict`.
|
||||
"""
|
||||
if inplace:
|
||||
new_arr = arr
|
||||
else:
|
||||
import copy
|
||||
|
||||
new_arr = copy.deepcopy(arr)
|
||||
for k, v in replacement_dict.items():
|
||||
new_arr[arr == k] = v
|
||||
return new_arr
|
||||
|
||||
|
||||
def train_test_split(data, train=0.7, val=0.15, shuffle=None, return_xy=False):
|
||||
"""Split a classification dataset in such a way so as to
|
||||
preserve the class distribution in subsamples of the dataset.
|
||||
"""
|
||||
if train + val > 1.0:
|
||||
raise ValueError("Invalid split values for train and val.")
|
||||
Y = data[:, -1]
|
||||
labels = set(Y)
|
||||
hist = dict()
|
||||
for l in labels:
|
||||
data_l = data[Y == l]
|
||||
nl = len(data_l)
|
||||
nl_train = int(nl * train)
|
||||
nl_val = int(nl * val)
|
||||
nl_test = nl - (nl_train + nl_val)
|
||||
hist[l] = (nl_train, nl_val, nl_test)
|
||||
|
||||
train_data = list()
|
||||
val_data = list()
|
||||
test_data = list()
|
||||
for l, (nl_train, nl_val, nl_test) in hist.items():
|
||||
data_l = data[Y == l]
|
||||
if shuffle:
|
||||
np.random.shuffle(data_l)
|
||||
train_l = data_l[:nl_train]
|
||||
val_l = data_l[nl_train:nl_train + nl_val]
|
||||
test_l = data_l[nl_train + nl_val:nl_train + nl_val + nl_test]
|
||||
train_data.append(train_l)
|
||||
val_data.append(val_l)
|
||||
test_data.append(test_l)
|
||||
|
||||
def _squash(data_list):
|
||||
data = np.array(data_list[0])
|
||||
for item in data_list[1:]:
|
||||
data = np.vstack((data, np.array(item)))
|
||||
return data
|
||||
|
||||
train_data = _squash(train_data)
|
||||
if val_data:
|
||||
val_data = _squash(val_data)
|
||||
if test_data:
|
||||
test_data = _squash(test_data)
|
||||
if return_xy:
|
||||
x_train = train_data[:, :-1]
|
||||
y_train = train_data[:, -1]
|
||||
x_val = val_data[:, :-1]
|
||||
y_val = val_data[:, -1]
|
||||
x_test = test_data[:, :-1]
|
||||
y_test = test_data[:, -1]
|
||||
return (x_train, y_train), (x_val, y_val), (x_test, y_test)
|
||||
return train_data, val_data, test_data
|
||||
|
||||
|
||||
def class_histogram(data, title="Untitled"):
|
||||
plt.figure(title)
|
||||
plt.clf()
|
||||
plt.title(title)
|
||||
dist, counts = np.unique(data[:, -1], return_counts=True)
|
||||
plt.bar(dist, counts)
|
||||
plt.xticks(dist)
|
||||
print("Call matplotlib.pyplot.show() to see the plot.")
|
||||
|
||||
|
||||
def ntimer(n=10):
|
||||
"""Wraps a function which wraps another function to time it."""
|
||||
if n < 1:
|
||||
raise (Exception(f"Invalid n = {n} given."))
|
||||
|
||||
def timer(func):
|
||||
"""Wraps `func` with a timer and returns the wrapped `func`."""
|
||||
def wrapper(*args, **kwargs):
|
||||
rv = None
|
||||
before = time()
|
||||
for _ in range(n):
|
||||
rv = func(*args, **kwargs)
|
||||
after = time()
|
||||
elapsed = after - before
|
||||
print(f"Elapsed: {elapsed*1e3:02.02f} ms")
|
||||
return rv
|
||||
|
||||
return wrapper
|
||||
|
||||
return timer
|
||||
|
||||
|
||||
def memoize(verbose=True):
|
||||
"""Wraps a function which wraps another function that memoizes."""
|
||||
def memoizer(func):
|
||||
"""Memoize (cache) return values of `func`.
|
||||
Wraps `func` and returns the wrapped `func` so that `func`
|
||||
is executed when the results are not available in the cache.
|
||||
"""
|
||||
cache = {}
|
||||
|
||||
def wrapper(*args, **kwargs):
|
||||
t = (pickle.dumps(args), pickle.dumps(kwargs))
|
||||
if t not in cache:
|
||||
if verbose:
|
||||
print(f"Adding NEW rv {func.__name__}{args}{kwargs} "
|
||||
"to cache.")
|
||||
cache[t] = func(*args, **kwargs)
|
||||
else:
|
||||
if verbose:
|
||||
print(f"Using OLD rv {func.__name__}{args}{kwargs} "
|
||||
"from cache.")
|
||||
return cache[t]
|
||||
|
||||
return wrapper
|
||||
|
||||
return memoizer
|
Loading…
Reference in New Issue
Block a user