Update components
This commit is contained in:
parent
a70166280a
commit
9b663477fd
@ -1,8 +1,10 @@
|
|||||||
#
|
"""This example script shows the usage of the new components architecture.
|
||||||
# DATASET
|
|
||||||
#
|
|
||||||
import torch
|
|
||||||
|
|
||||||
|
Serialization/deserialization also works as expected.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# DATASET
|
||||||
|
import torch
|
||||||
from sklearn.datasets import load_iris
|
from sklearn.datasets import load_iris
|
||||||
from sklearn.preprocessing import StandardScaler
|
from sklearn.preprocessing import StandardScaler
|
||||||
|
|
||||||
@ -16,9 +18,7 @@ x_train = torch.Tensor(x_train)
|
|||||||
y_train = torch.Tensor(y_train)
|
y_train = torch.Tensor(y_train)
|
||||||
num_classes = len(torch.unique(y_train))
|
num_classes = len(torch.unique(y_train))
|
||||||
|
|
||||||
#
|
|
||||||
# CREATE NEW COMPONENTS
|
# CREATE NEW COMPONENTS
|
||||||
#
|
|
||||||
from prototorch.components import *
|
from prototorch.components import *
|
||||||
from prototorch.components.initializers import *
|
from prototorch.components.initializers import *
|
||||||
|
|
||||||
@ -33,9 +33,7 @@ components = ReasoningComponents(
|
|||||||
(3, 6), StratifiedSelectionInitializer(x_train, y_train))
|
(3, 6), StratifiedSelectionInitializer(x_train, y_train))
|
||||||
print(components())
|
print(components())
|
||||||
|
|
||||||
#
|
|
||||||
# TEST SERIALIZATION
|
# TEST SERIALIZATION
|
||||||
#
|
|
||||||
import io
|
import io
|
||||||
|
|
||||||
save = io.BytesIO()
|
save = io.BytesIO()
|
||||||
@ -53,8 +51,8 @@ serialized_prototypes = torch.load(save)
|
|||||||
|
|
||||||
assert torch.all(prototypes.components == serialized_prototypes.components
|
assert torch.all(prototypes.components == serialized_prototypes.components
|
||||||
), "Serialization of Components failed."
|
), "Serialization of Components failed."
|
||||||
assert torch.all(prototypes.labels == serialized_prototypes.labels
|
assert torch.all(prototypes.component_labels == serialized_prototypes.
|
||||||
), "Serialization of Components failed."
|
component_labels), "Serialization of Components failed."
|
||||||
|
|
||||||
save = io.BytesIO()
|
save = io.BytesIO()
|
||||||
torch.save(components, save)
|
torch.save(components, save)
|
||||||
|
@ -1,7 +1,2 @@
|
|||||||
from prototorch.components.components import Components, LabeledComponents, ReasoningComponents
|
from prototorch.components.components import *
|
||||||
|
from prototorch.components.initializers import *
|
||||||
__all__ = [
|
|
||||||
"Components",
|
|
||||||
"LabeledComponents",
|
|
||||||
"ReasoningComponents",
|
|
||||||
]
|
|
||||||
|
@ -1,18 +1,18 @@
|
|||||||
"""ProtoTorch components modules."""
|
"""ProtoTorch components modules."""
|
||||||
|
|
||||||
from typing import Tuple
|
|
||||||
import warnings
|
import warnings
|
||||||
from prototorch.components.initializers import EqualLabelInitializer, ZeroReasoningsInitializer
|
from typing import Tuple
|
||||||
import torch
|
|
||||||
from torch.nn.parameter import Parameter
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from prototorch.components.initializers import (ComponentsInitializer,
|
||||||
|
EqualLabelInitializer,
|
||||||
|
ZeroReasoningsInitializer)
|
||||||
from prototorch.functions.initializers import get_initializer
|
from prototorch.functions.initializers import get_initializer
|
||||||
|
from torch.nn.parameter import Parameter
|
||||||
|
|
||||||
|
|
||||||
class Components(torch.nn.Module):
|
class Components(torch.nn.Module):
|
||||||
"""
|
"""Components is a set of learnable Tensors."""
|
||||||
Components is a set of learnable Tensors.
|
|
||||||
"""
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
number_of_components=None,
|
number_of_components=None,
|
||||||
initializer=None,
|
initializer=None,
|
||||||
@ -31,14 +31,16 @@ class Components(torch.nn.Module):
|
|||||||
self._initialize_components(number_of_components, initializer)
|
self._initialize_components(number_of_components, initializer)
|
||||||
|
|
||||||
def _initialize_components(self, number_of_components, initializer):
|
def _initialize_components(self, number_of_components, initializer):
|
||||||
|
if not isinstance(initializer, ComponentsInitializer):
|
||||||
|
emsg = f"`initializer` has to be some kind of `ComponentsInitializer`. " \
|
||||||
|
f"You provided: {initializer=} instead."
|
||||||
|
raise TypeError(emsg)
|
||||||
self._components = Parameter(
|
self._components = Parameter(
|
||||||
initializer.generate(number_of_components))
|
initializer.generate(number_of_components))
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def components(self):
|
def components(self):
|
||||||
"""
|
"""Tensor containing the component tensors."""
|
||||||
Tensor containing the component tensors.
|
|
||||||
"""
|
|
||||||
return self._components.detach().cpu()
|
return self._components.detach().cpu()
|
||||||
|
|
||||||
def forward(self):
|
def forward(self):
|
||||||
@ -49,8 +51,8 @@ class Components(torch.nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class LabeledComponents(Components):
|
class LabeledComponents(Components):
|
||||||
"""
|
"""LabeledComponents generate a set of components and a set of labels.
|
||||||
LabeledComponents generate a set of components and a set of labels.
|
|
||||||
Every Component has a label assigned.
|
Every Component has a label assigned.
|
||||||
"""
|
"""
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
@ -62,11 +64,11 @@ class LabeledComponents(Components):
|
|||||||
super().__init__(initialized_components=initialized_components[0])
|
super().__init__(initialized_components=initialized_components[0])
|
||||||
self._labels = initialized_components[1]
|
self._labels = initialized_components[1]
|
||||||
else:
|
else:
|
||||||
self._initialize_labels(labels, initializer)
|
self._initialize_labels(labels)
|
||||||
super().__init__(number_of_components=len(self._labels),
|
super().__init__(number_of_components=len(self._labels),
|
||||||
initializer=initializer)
|
initializer=initializer)
|
||||||
|
|
||||||
def _initialize_labels(self, labels, initializer):
|
def _initialize_labels(self, labels):
|
||||||
if type(labels) == tuple:
|
if type(labels) == tuple:
|
||||||
num_classes, prototypes_per_class = labels
|
num_classes, prototypes_per_class = labels
|
||||||
labels = EqualLabelInitializer(num_classes, prototypes_per_class)
|
labels = EqualLabelInitializer(num_classes, prototypes_per_class)
|
||||||
@ -74,10 +76,8 @@ class LabeledComponents(Components):
|
|||||||
self._labels = labels.generate()
|
self._labels = labels.generate()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def labels(self):
|
def component_labels(self):
|
||||||
"""
|
"""Tensor containing the component tensors."""
|
||||||
Tensor containing the component tensors.
|
|
||||||
"""
|
|
||||||
return self._labels.detach().cpu()
|
return self._labels.detach().cpu()
|
||||||
|
|
||||||
def forward(self):
|
def forward(self):
|
||||||
@ -85,16 +85,19 @@ class LabeledComponents(Components):
|
|||||||
|
|
||||||
|
|
||||||
class ReasoningComponents(Components):
|
class ReasoningComponents(Components):
|
||||||
"""
|
"""ReasoningComponents generate a set of components and a set of reasoning matrices.
|
||||||
ReasoningComponents generate a set of components and a set of reasoning matrices.
|
|
||||||
Every Component has a reasoning matrix assigned.
|
Every Component has a reasoning matrix assigned.
|
||||||
|
|
||||||
A reasoning matrix is a Nx2 matrix, where N is the number of Classes.
|
A reasoning matrix is a Nx2 matrix, where N is the number of Classes. The
|
||||||
The first element is called positive reasoning :math:`p`, the second negative reasoning :math:`n`.
|
first element is called positive reasoning :math:`p`, the second negative
|
||||||
A components can reason in favour (positive) of a class, against (negative) a class or not at all (neutral).
|
reasoning :math:`n`. A components can reason in favour (positive) of a
|
||||||
|
class, against (negative) a class or not at all (neutral).
|
||||||
|
|
||||||
|
It holds that :math:`0 \leq n \leq 1`, :math:`0 \leq p \leq 1` and :math:`0
|
||||||
|
\leq n+p \leq 1`. Therefore :math:`n` and :math:`p` are two elements of a
|
||||||
|
three element probability distribution.
|
||||||
|
|
||||||
It holds that :math:`0 \leq n \leq 1`, :math:`0 \leq p \leq 1` and :math:`0 \leq n+p \leq 1`.
|
|
||||||
Therefore :math:`n` and :math:`p` are two elements of a three element probability distribution.
|
|
||||||
"""
|
"""
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
reasonings=None,
|
reasonings=None,
|
||||||
@ -119,12 +122,12 @@ class ReasoningComponents(Components):
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def reasonings(self):
|
def reasonings(self):
|
||||||
"""
|
"""Returns Reasoning Matrix.
|
||||||
Returns Reasoning Matrix.
|
|
||||||
|
|
||||||
Dimension NxCx2
|
Dimension NxCx2
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return self._reasonings.detach().cpu()
|
return self._reasonings.detach().cpu()
|
||||||
|
|
||||||
def forward(self):
|
def forward(self):
|
||||||
return super().forward(), self._reasonings
|
return super().forward(), self._reasonings
|
||||||
|
Loading…
Reference in New Issue
Block a user