Fix a bunch of codacy code-style issues
This commit is contained in:
parent
8f3a43f62a
commit
8c629c0cb1
@ -1,9 +1,11 @@
|
||||
# Release 0.1.1-dev0
|
||||
# ProtoTorch Releases
|
||||
|
||||
## Includes
|
||||
## Release 0.1.1-dev0
|
||||
|
||||
### Includes
|
||||
- Bugfixes.
|
||||
- 100% test coverage.
|
||||
|
||||
# Release 0.1.0-dev0
|
||||
## Release 0.1.0-dev0
|
||||
|
||||
Initial public release of ProtoTorch.
|
||||
|
@ -21,6 +21,7 @@ x_train = scaler.transform(x_train)
|
||||
# Define the GLVQ model
|
||||
class Model(torch.nn.Module):
|
||||
def __init__(self, **kwargs):
|
||||
"""GLVQ model."""
|
||||
super().__init__()
|
||||
self.p1 = Prototypes1D(input_dim=2,
|
||||
prototypes_per_class=1,
|
||||
|
@ -16,16 +16,17 @@ def register_activation(f):
|
||||
@register_activation
|
||||
# @torch.jit.script
|
||||
def identity(x, beta=torch.tensor([0])):
|
||||
""":math:`f(x) = x`"""
|
||||
""":math:`f(x) = x`."""
|
||||
return x
|
||||
|
||||
|
||||
@register_activation
|
||||
# @torch.jit.script
|
||||
def sigmoid_beta(x, beta=torch.tensor([10])):
|
||||
""":math:`f(x) = \\frac{1}{1 + e^{-\\beta x}}`
|
||||
r""":math:`f(x) = \\frac{1}{1 + e^{-\\beta x}}`.
|
||||
|
||||
Keyword Arguments:
|
||||
__________________
|
||||
beta (float): Parameter :math:`\\beta`
|
||||
"""
|
||||
out = torch.reciprocal(1.0 + torch.exp(-int(beta.item()) * x))
|
||||
@ -35,9 +36,10 @@ def sigmoid_beta(x, beta=torch.tensor([10])):
|
||||
@register_activation
|
||||
# @torch.jit.script
|
||||
def swish_beta(x, beta=torch.tensor([10])):
|
||||
""":math:`f(x) = \\frac{x}{1 + e^{-\\beta x}}`
|
||||
r""":math:`f(x) = \\frac{x}{1 + e^{-\\beta x}}`.
|
||||
|
||||
Keyword Arguments:
|
||||
__________________
|
||||
beta (float): Parameter :math:`\\beta`
|
||||
"""
|
||||
out = x * sigmoid_beta(x, beta=beta)
|
||||
|
@ -4,7 +4,8 @@ import torch
|
||||
|
||||
|
||||
def squared_euclidean_distance(x, y):
|
||||
"""Compute the squared Euclidean distance between :math:`x` and :math:`y`.
|
||||
"""
|
||||
Compute the squared Euclidean distance between :math:`x` and :math:`y`.
|
||||
|
||||
Expected dimension of x is 2.
|
||||
Expected dimension of y is 2.
|
||||
@ -17,7 +18,8 @@ def squared_euclidean_distance(x, y):
|
||||
|
||||
|
||||
def euclidean_distance(x, y):
|
||||
"""Compute the Euclidean distance between :math:`x` and :math:`y`.
|
||||
"""
|
||||
Compute the Euclidean distance between :math:`x` and :math:`y`.
|
||||
|
||||
Expected dimension of x is 2.
|
||||
Expected dimension of y is 2.
|
||||
@ -28,7 +30,8 @@ def euclidean_distance(x, y):
|
||||
|
||||
|
||||
def lpnorm_distance(x, y, p):
|
||||
"""Compute :math:`{\\langle x, y \\rangle}_p`.
|
||||
"""
|
||||
Compute :math:`{\\langle x, y \\rangle}_p`.
|
||||
|
||||
Expected dimension of x is 2.
|
||||
Expected dimension of y is 2.
|
||||
@ -38,7 +41,8 @@ def lpnorm_distance(x, y, p):
|
||||
|
||||
|
||||
def omega_distance(x, y, omega):
|
||||
"""Omega distance.
|
||||
"""
|
||||
Omega distance.
|
||||
|
||||
Compute :math:`{\\langle \\Omega x, \\Omega y \\rangle}_p`
|
||||
|
||||
@ -53,7 +57,8 @@ def omega_distance(x, y, omega):
|
||||
|
||||
|
||||
def lomega_distance(x, y, omegas):
|
||||
"""Localized Omega distance.
|
||||
"""
|
||||
Localized Omega distance.
|
||||
|
||||
Compute :math:`{\\langle \\Omega_k x, \\Omega_k y_k \\rangle}_p`
|
||||
|
||||
|
@ -7,7 +7,6 @@ from prototorch.functions.losses import glvq_loss
|
||||
|
||||
|
||||
class GLVQLoss(torch.nn.Module):
|
||||
"""GLVQ Loss."""
|
||||
def __init__(self, margin=0.0, squashing='identity', beta=10, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.margin = margin
|
||||
|
Loading…
Reference in New Issue
Block a user