Fix a bunch of codacy code-style issues
This commit is contained in:
parent
8f3a43f62a
commit
8c629c0cb1
12
RELEASE.md
12
RELEASE.md
@ -1,9 +1,11 @@
|
|||||||
# Release 0.1.1-dev0
|
# ProtoTorch Releases
|
||||||
|
|
||||||
## Includes
|
## Release 0.1.1-dev0
|
||||||
- Bugfixes.
|
|
||||||
- 100% test coverage.
|
|
||||||
|
|
||||||
# Release 0.1.0-dev0
|
### Includes
|
||||||
|
- Bugfixes.
|
||||||
|
- 100% test coverage.
|
||||||
|
|
||||||
|
## Release 0.1.0-dev0
|
||||||
|
|
||||||
Initial public release of ProtoTorch.
|
Initial public release of ProtoTorch.
|
||||||
|
@ -21,6 +21,7 @@ x_train = scaler.transform(x_train)
|
|||||||
# Define the GLVQ model
|
# Define the GLVQ model
|
||||||
class Model(torch.nn.Module):
|
class Model(torch.nn.Module):
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
|
"""GLVQ model."""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.p1 = Prototypes1D(input_dim=2,
|
self.p1 = Prototypes1D(input_dim=2,
|
||||||
prototypes_per_class=1,
|
prototypes_per_class=1,
|
||||||
|
@ -16,16 +16,17 @@ def register_activation(f):
|
|||||||
@register_activation
|
@register_activation
|
||||||
# @torch.jit.script
|
# @torch.jit.script
|
||||||
def identity(x, beta=torch.tensor([0])):
|
def identity(x, beta=torch.tensor([0])):
|
||||||
""":math:`f(x) = x`"""
|
""":math:`f(x) = x`."""
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
@register_activation
|
@register_activation
|
||||||
# @torch.jit.script
|
# @torch.jit.script
|
||||||
def sigmoid_beta(x, beta=torch.tensor([10])):
|
def sigmoid_beta(x, beta=torch.tensor([10])):
|
||||||
""":math:`f(x) = \\frac{1}{1 + e^{-\\beta x}}`
|
r""":math:`f(x) = \\frac{1}{1 + e^{-\\beta x}}`.
|
||||||
|
|
||||||
Keyword Arguments:
|
Keyword Arguments:
|
||||||
|
__________________
|
||||||
beta (float): Parameter :math:`\\beta`
|
beta (float): Parameter :math:`\\beta`
|
||||||
"""
|
"""
|
||||||
out = torch.reciprocal(1.0 + torch.exp(-int(beta.item()) * x))
|
out = torch.reciprocal(1.0 + torch.exp(-int(beta.item()) * x))
|
||||||
@ -35,9 +36,10 @@ def sigmoid_beta(x, beta=torch.tensor([10])):
|
|||||||
@register_activation
|
@register_activation
|
||||||
# @torch.jit.script
|
# @torch.jit.script
|
||||||
def swish_beta(x, beta=torch.tensor([10])):
|
def swish_beta(x, beta=torch.tensor([10])):
|
||||||
""":math:`f(x) = \\frac{x}{1 + e^{-\\beta x}}`
|
r""":math:`f(x) = \\frac{x}{1 + e^{-\\beta x}}`.
|
||||||
|
|
||||||
Keyword Arguments:
|
Keyword Arguments:
|
||||||
|
__________________
|
||||||
beta (float): Parameter :math:`\\beta`
|
beta (float): Parameter :math:`\\beta`
|
||||||
"""
|
"""
|
||||||
out = x * sigmoid_beta(x, beta=beta)
|
out = x * sigmoid_beta(x, beta=beta)
|
||||||
|
@ -4,7 +4,8 @@ import torch
|
|||||||
|
|
||||||
|
|
||||||
def squared_euclidean_distance(x, y):
|
def squared_euclidean_distance(x, y):
|
||||||
"""Compute the squared Euclidean distance between :math:`x` and :math:`y`.
|
"""
|
||||||
|
Compute the squared Euclidean distance between :math:`x` and :math:`y`.
|
||||||
|
|
||||||
Expected dimension of x is 2.
|
Expected dimension of x is 2.
|
||||||
Expected dimension of y is 2.
|
Expected dimension of y is 2.
|
||||||
@ -17,7 +18,8 @@ def squared_euclidean_distance(x, y):
|
|||||||
|
|
||||||
|
|
||||||
def euclidean_distance(x, y):
|
def euclidean_distance(x, y):
|
||||||
"""Compute the Euclidean distance between :math:`x` and :math:`y`.
|
"""
|
||||||
|
Compute the Euclidean distance between :math:`x` and :math:`y`.
|
||||||
|
|
||||||
Expected dimension of x is 2.
|
Expected dimension of x is 2.
|
||||||
Expected dimension of y is 2.
|
Expected dimension of y is 2.
|
||||||
@ -28,7 +30,8 @@ def euclidean_distance(x, y):
|
|||||||
|
|
||||||
|
|
||||||
def lpnorm_distance(x, y, p):
|
def lpnorm_distance(x, y, p):
|
||||||
"""Compute :math:`{\\langle x, y \\rangle}_p`.
|
"""
|
||||||
|
Compute :math:`{\\langle x, y \\rangle}_p`.
|
||||||
|
|
||||||
Expected dimension of x is 2.
|
Expected dimension of x is 2.
|
||||||
Expected dimension of y is 2.
|
Expected dimension of y is 2.
|
||||||
@ -38,7 +41,8 @@ def lpnorm_distance(x, y, p):
|
|||||||
|
|
||||||
|
|
||||||
def omega_distance(x, y, omega):
|
def omega_distance(x, y, omega):
|
||||||
"""Omega distance.
|
"""
|
||||||
|
Omega distance.
|
||||||
|
|
||||||
Compute :math:`{\\langle \\Omega x, \\Omega y \\rangle}_p`
|
Compute :math:`{\\langle \\Omega x, \\Omega y \\rangle}_p`
|
||||||
|
|
||||||
@ -53,7 +57,8 @@ def omega_distance(x, y, omega):
|
|||||||
|
|
||||||
|
|
||||||
def lomega_distance(x, y, omegas):
|
def lomega_distance(x, y, omegas):
|
||||||
"""Localized Omega distance.
|
"""
|
||||||
|
Localized Omega distance.
|
||||||
|
|
||||||
Compute :math:`{\\langle \\Omega_k x, \\Omega_k y_k \\rangle}_p`
|
Compute :math:`{\\langle \\Omega_k x, \\Omega_k y_k \\rangle}_p`
|
||||||
|
|
||||||
|
@ -7,7 +7,6 @@ from prototorch.functions.losses import glvq_loss
|
|||||||
|
|
||||||
|
|
||||||
class GLVQLoss(torch.nn.Module):
|
class GLVQLoss(torch.nn.Module):
|
||||||
"""GLVQ Loss."""
|
|
||||||
def __init__(self, margin=0.0, squashing='identity', beta=10, **kwargs):
|
def __init__(self, margin=0.0, squashing='identity', beta=10, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
self.margin = margin
|
self.margin = margin
|
||||||
|
Loading…
Reference in New Issue
Block a user