Automatic Formatting.
This commit is contained in:
@@ -1 +0,0 @@
|
||||
from .colors import color_scheme, get_legend_handles
|
||||
|
@@ -1,13 +1,13 @@
|
||||
"""Easy matplotlib animation. From https://github.com/jwkvam/celluloid."""
|
||||
|
||||
from typing import Dict, List
|
||||
from collections import defaultdict
|
||||
from typing import Dict, List
|
||||
|
||||
from matplotlib.figure import Figure
|
||||
from matplotlib.artist import Artist
|
||||
from matplotlib.animation import ArtistAnimation
|
||||
from matplotlib.artist import Artist
|
||||
from matplotlib.figure import Figure
|
||||
|
||||
__version__ = '0.2.0'
|
||||
__version__ = "0.2.0"
|
||||
|
||||
|
||||
class Camera:
|
||||
@@ -19,7 +19,7 @@ class Camera:
|
||||
self._offsets: Dict[str, Dict[int, int]] = {
|
||||
k: defaultdict(int)
|
||||
for k in
|
||||
['collections', 'patches', 'lines', 'texts', 'artists', 'images']
|
||||
["collections", "patches", "lines", "texts", "artists", "images"]
|
||||
}
|
||||
self._photos: List[List[Artist]] = []
|
||||
|
||||
|
@@ -1,13 +1,14 @@
|
||||
"""ProtoFlow color utilities."""
|
||||
|
||||
from matplotlib import cm
|
||||
from matplotlib.colors import Normalize
|
||||
from matplotlib.colors import to_hex
|
||||
from matplotlib.colors import to_rgb
|
||||
import matplotlib.lines as mlines
|
||||
from matplotlib import cm
|
||||
from matplotlib.colors import Normalize, to_hex, to_rgb
|
||||
|
||||
|
||||
def color_scheme(n, cmap="viridis", form="hex", tikz=False,
|
||||
def color_scheme(n,
|
||||
cmap="viridis",
|
||||
form="hex",
|
||||
tikz=False,
|
||||
zero_indexed=False):
|
||||
"""Return *n* colors from the color scheme.
|
||||
|
||||
@@ -57,13 +58,16 @@ def get_legend_handles(labels, marker="dots", zero_indexed=False):
|
||||
zero_indexed=zero_indexed)
|
||||
for label, color in zip(labels, colors.values()):
|
||||
if marker == "dots":
|
||||
handle = mlines.Line2D([], [],
|
||||
color="white",
|
||||
markerfacecolor=color,
|
||||
marker="o",
|
||||
markersize=10,
|
||||
markeredgecolor="k",
|
||||
label=label)
|
||||
handle = mlines.Line2D(
|
||||
[],
|
||||
[],
|
||||
color="white",
|
||||
markerfacecolor=color,
|
||||
marker="o",
|
||||
markersize=10,
|
||||
markeredgecolor="k",
|
||||
label=label,
|
||||
)
|
||||
else:
|
||||
handle = mlines.Line2D([], [],
|
||||
color=color,
|
||||
|
@@ -11,17 +11,17 @@ import numpy as np
|
||||
|
||||
def progressbar(title, value, end, bar_width=20):
|
||||
percent = float(value) / end
|
||||
arrow = '=' * int(round(percent * bar_width) - 1) + '>'
|
||||
spaces = '.' * (bar_width - len(arrow))
|
||||
sys.stdout.write('\r{}: [{}] {}%'.format(title, arrow + spaces,
|
||||
arrow = "=" * int(round(percent * bar_width) - 1) + ">"
|
||||
spaces = "." * (bar_width - len(arrow))
|
||||
sys.stdout.write("\r{}: [{}] {}%".format(title, arrow + spaces,
|
||||
int(round(percent * 100))))
|
||||
sys.stdout.flush()
|
||||
if percent == 1.0:
|
||||
print()
|
||||
|
||||
|
||||
def prettify_string(inputs, start='', sep=' ', end='\n'):
|
||||
outputs = start + ' '.join(inputs.split()) + end
|
||||
def prettify_string(inputs, start="", sep=" ", end="\n"):
|
||||
outputs = start + " ".join(inputs.split()) + end
|
||||
return outputs
|
||||
|
||||
|
||||
@@ -29,22 +29,22 @@ def pretty_print(inputs):
|
||||
print(prettify_string(inputs))
|
||||
|
||||
|
||||
def writelog(self, *logs, logdir='./logs', logfile='run.txt'):
|
||||
def writelog(self, *logs, logdir="./logs", logfile="run.txt"):
|
||||
f = os.path.join(logdir, logfile)
|
||||
with open(f, 'a+') as fh:
|
||||
with open(f, "a+") as fh:
|
||||
for log in logs:
|
||||
fh.write(log)
|
||||
fh.write('\n')
|
||||
fh.write("\n")
|
||||
|
||||
|
||||
def start_tensorboard(self, logdir='./logs'):
|
||||
cmd = f'tensorboard --logdir={logdir} --port=6006'
|
||||
def start_tensorboard(self, logdir="./logs"):
|
||||
cmd = f"tensorboard --logdir={logdir} --port=6006"
|
||||
os.system(cmd)
|
||||
|
||||
|
||||
def make_directory(save_dir):
|
||||
if not os.path.exists(save_dir):
|
||||
print(f'Making directory {save_dir}.')
|
||||
print(f"Making directory {save_dir}.")
|
||||
os.mkdir(save_dir)
|
||||
|
||||
|
||||
@@ -52,36 +52,36 @@ def make_gif(filenames, duration, output_file=None):
|
||||
try:
|
||||
import imageio
|
||||
except ModuleNotFoundError as e:
|
||||
print('Please install Protoflow with [other] extra requirements.')
|
||||
print("Please install Protoflow with [other] extra requirements.")
|
||||
raise (e)
|
||||
|
||||
images = list()
|
||||
for filename in filenames:
|
||||
images.append(imageio.imread(filename))
|
||||
if not output_file:
|
||||
output_file = f'makegif.gif'
|
||||
output_file = f"makegif.gif"
|
||||
if images:
|
||||
imageio.mimwrite(output_file, images, duration=duration)
|
||||
|
||||
|
||||
def gif_from_dir(directory,
|
||||
duration,
|
||||
prefix='',
|
||||
prefix="",
|
||||
output_file=None,
|
||||
verbose=True):
|
||||
images = os.listdir(directory)
|
||||
if verbose:
|
||||
print(f'Making gif from {len(images)} images under {directory}.')
|
||||
print(f"Making gif from {len(images)} images under {directory}.")
|
||||
filenames = list()
|
||||
# Sort images
|
||||
images = sorted(
|
||||
images,
|
||||
key=lambda img: int(os.path.splitext(img)[0].replace(prefix, '')))
|
||||
key=lambda img: int(os.path.splitext(img)[0].replace(prefix, "")))
|
||||
for image in images:
|
||||
fname = os.path.join(directory, image)
|
||||
filenames.append(fname)
|
||||
if not output_file:
|
||||
output_file = os.path.join(directory, 'makegif.gif')
|
||||
output_file = os.path.join(directory, "makegif.gif")
|
||||
make_gif(filenames=filenames, duration=duration, output_file=output_file)
|
||||
|
||||
|
||||
@@ -95,12 +95,12 @@ def predict_and_score(clf,
|
||||
x_test,
|
||||
y_test,
|
||||
verbose=False,
|
||||
title='Test accuracy'):
|
||||
title="Test accuracy"):
|
||||
y_pred = clf.predict(x_test)
|
||||
accuracy = np.sum(y_test == y_pred)
|
||||
normalized_acc = accuracy / float(len(y_test))
|
||||
if verbose:
|
||||
print(f'{title}: {normalized_acc * 100:06.04f}%')
|
||||
print(f"{title}: {normalized_acc * 100:06.04f}%")
|
||||
return normalized_acc
|
||||
|
||||
|
||||
@@ -124,6 +124,7 @@ def replace_in(arr, replacement_dict, inplace=False):
|
||||
new_arr = arr
|
||||
else:
|
||||
import copy
|
||||
|
||||
new_arr = copy.deepcopy(arr)
|
||||
for k, v in replacement_dict.items():
|
||||
new_arr[arr == k] = v
|
||||
@@ -135,7 +136,7 @@ def train_test_split(data, train=0.7, val=0.15, shuffle=None, return_xy=False):
|
||||
preserve the class distribution in subsamples of the dataset.
|
||||
"""
|
||||
if train + val > 1.0:
|
||||
raise ValueError('Invalid split values for train and val.')
|
||||
raise ValueError("Invalid split values for train and val.")
|
||||
Y = data[:, -1]
|
||||
labels = set(Y)
|
||||
hist = dict()
|
||||
@@ -183,20 +184,20 @@ def train_test_split(data, train=0.7, val=0.15, shuffle=None, return_xy=False):
|
||||
return train_data, val_data, test_data
|
||||
|
||||
|
||||
def class_histogram(data, title='Untitled'):
|
||||
def class_histogram(data, title="Untitled"):
|
||||
plt.figure(title)
|
||||
plt.clf()
|
||||
plt.title(title)
|
||||
dist, counts = np.unique(data[:, -1], return_counts=True)
|
||||
plt.bar(dist, counts)
|
||||
plt.xticks(dist)
|
||||
print('Call matplotlib.pyplot.show() to see the plot.')
|
||||
print("Call matplotlib.pyplot.show() to see the plot.")
|
||||
|
||||
|
||||
def ntimer(n=10):
|
||||
"""Wraps a function which wraps another function to time it."""
|
||||
if n < 1:
|
||||
raise (Exception(f'Invalid n = {n} given.'))
|
||||
raise (Exception(f"Invalid n = {n} given."))
|
||||
|
||||
def timer(func):
|
||||
"""Wraps `func` with a timer and returns the wrapped `func`."""
|
||||
@@ -207,7 +208,7 @@ def ntimer(n=10):
|
||||
rv = func(*args, **kwargs)
|
||||
after = time()
|
||||
elapsed = after - before
|
||||
print(f'Elapsed: {elapsed*1e3:02.02f} ms')
|
||||
print(f"Elapsed: {elapsed*1e3:02.02f} ms")
|
||||
return rv
|
||||
|
||||
return wrapper
|
||||
@@ -228,15 +229,15 @@ def memoize(verbose=True):
|
||||
t = (pickle.dumps(args), pickle.dumps(kwargs))
|
||||
if t not in cache:
|
||||
if verbose:
|
||||
print(f'Adding NEW rv {func.__name__}{args}{kwargs} '
|
||||
'to cache.')
|
||||
print(f"Adding NEW rv {func.__name__}{args}{kwargs} "
|
||||
"to cache.")
|
||||
cache[t] = func(*args, **kwargs)
|
||||
else:
|
||||
if verbose:
|
||||
print(f'Using OLD rv {func.__name__}{args}{kwargs} '
|
||||
'from cache.')
|
||||
print(f"Using OLD rv {func.__name__}{args}{kwargs} "
|
||||
"from cache.")
|
||||
return cache[t]
|
||||
|
||||
return wrapper
|
||||
|
||||
return memoizer
|
||||
return memoizer
|
||||
|
Reference in New Issue
Block a user